Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1) Chứng minh rằng : Đường thẳng MN song song với mặt phẳng (SCD).
2) Tìm giao tuyến của mp(MNP) và mp(ABCD).
3) Tìm giao điểm G của đường thẳng SC và mp(MNP) . Tính tỷ số \(\frac{{SC}}{{SG}}\).
Quảng cáo
1) Chứng minh đường thẳng MN song song với 1 đường thẳng nằm trong mặt phẳng (SCD).
2) Hai mặt phẳng chứa 2 đường thẳng song song thì cắt nhau theo giao tuyến (nếu có) song song với 2 đường thẳng đó.
3) Áp dụng định lí Menelaus trong tam giác SAC: \(\frac{{MS}}{{MA}}.\frac{{PA}}{{PC}}.\frac{{GC}}{{GS}} = 1\).
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












