Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f'\left( x \right)\) có bảng biến thiên như sau: Bất

Câu hỏi số 297766:
Vận dụng cao

Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f'\left( x \right)\) có bảng biến thiên như sau:

Bất phương trình \(f\left( x \right) < {e^x} + m\) đúng với mọi \(x \in \left( { - 1;1} \right)\) khi và chỉ khi:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:297766
Phương pháp giải

Cô lập m, đưa bất phương trình về dạng \(g\left( x \right) < m\,\,\forall x \in \left( {a;b} \right) \Leftrightarrow m \ge \mathop {\max }\limits_{\left[ {a;b} \right]} g\left( x \right)\).

Giải chi tiết

Theo đề bài ta có : \(f\left( x \right) < {e^x} + m \Leftrightarrow f\left( x \right) - {e^x} < m\)

Đặt \(g\left( x \right) = f\left( x \right) - {e^x}.\) Khi đó :

\(\begin{array}{l}f\left( x \right) < {e^x} + m\,\,\forall x \in \left( { - 1;1} \right)\\ \Rightarrow g\left( x \right) = f\left( x \right) - {e^x} < m\,\,\forall x \in \left( { - 1;1} \right)\\ \Leftrightarrow m \ge \mathop {\max }\limits_{\left[ { - 1;1} \right]} g\left( x \right)\\g'\left( x \right) = f'\left( x \right) - {e^x}\end{array}\)

 Trên \(\left( { - 1;1} \right)\) ta có \(f'\left( x \right) < 0;\,\,{e^x} > 0\,\,\forall x \in R \Rightarrow g'\left( x \right) < 0\,\,\forall x \in \left( { - 1;1} \right)\)

\( \Rightarrow g\left( x \right)\) nghịch biến trên \(\left( { - 1;\;1} \right).\)

\(\begin{array}{l} \Rightarrow \mathop {\max }\limits_{\left[ { - 1;1} \right]} g\left( x \right) = g\left( { - 1} \right) = f\left( { - 1} \right) - {e^{ - 1}} = f\left( { - 1} \right) - \dfrac{1}{e}\\ \Rightarrow m \ge f\left( { - 1} \right) - \dfrac{1}{e}.\end{array}\)  

CHỌN C.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com