Cho \(a,\,b\, \in N^*\) thỏa mãn số \(M = \left( {9a + 11b} \right).\left( {5b + 11a} \right)\) chia hết cho
Cho \(a,\,b\, \in N^*\) thỏa mãn số \(M = \left( {9a + 11b} \right).\left( {5b + 11a} \right)\) chia hết cho \(19.\) Hãy giải thích vì sao M cũng chia hết cho \(361.\)
Quảng cáo
Sử dụng tính chất chia hết. \(M = \left( {9a + 11b} \right)\left( {5b + 11a} \right) \vdots 19\,\,\,\,\,\left( {a,b \in {N^*}} \right)\) thì nó cũng chia hết cho \(361\) ta cần chỉ ra, một trong hai số chia hết cho \(19\) thì số còn lại cũng chia hết cho \(19.\)
Lưu ý: \(361 = 19 \times 19.\)
Xét: \(m\left( {9a + 11b} \right) + n\left( {5b + 11a} \right) \vdots 19\) với \(m,\, n\) nguyên tố cùng nhau.
>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










