Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số các giá trị nguyên nhỏ hơn 99 của tham số m để phương trình \({\log _5}\left( {24x + m} \right)

Câu hỏi số 302642:
Vận dụng cao

Số các giá trị nguyên nhỏ hơn 99 của tham số m để phương trình \({\log _5}\left( {24x + m} \right) = {\log _4}\left( {6x} \right)\) có nghiệm là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:302642
Phương pháp giải

+) Đặt \({\log _5}\left( {24x + m} \right) = {\log _4}\left( {6x} \right) = t \Leftrightarrow \left\{ \begin{array}{l}24x + m = {5^t}\\6x = {4^t}\end{array} \right.\), đưa phương trình về dạng \(f\left( t \right) = m\).

+) Số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(y = f\left( t \right)\) và đường thẳng \(y = m\) song song với trục hoành.

+) Lập BBT của đồ thị hàm số \(y = f\left( t \right)\) và kết luận.

Giải chi tiết

ĐK: \(\left\{ \begin{array}{l}24x + m > 0\\x > 0\end{array} \right.\)

Đặt \({\log _5}\left( {24x + m} \right) = {\log _4}\left( {6x} \right) = t \Leftrightarrow \left\{ \begin{array}{l}24x + m = {5^t}\\6x = {4^t}\end{array} \right. \Leftrightarrow \dfrac{{{5^t} - m}}{{24}} = \dfrac{{{4^t}}}{6}\)

\( \Leftrightarrow {5^t} - m = {4.4^t} \Leftrightarrow f\left( t \right) = {5^t} - {4^{t + 1}} = m\), do đó số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(f\left( t \right) = {5^t} - {4^{t + 1}}\) và đường thẳng \(y = m\) song song với trục hoành.

Xét hàm số \(f\left( t \right) = {5^t} - {4^{t + 1}}\) ta có

\(f'\left( t \right) = {5^t}\ln 5 - {4^{t + 1}}\ln 4 \Leftrightarrow {5^t}\ln 5 = {4^t}.4\ln 4 \Leftrightarrow {\left( {\dfrac{5}{4}} \right)^t} = \dfrac{{\ln 256}}{{\ln 5}} \Leftrightarrow t = {\log _{\dfrac{5}{4}}}\dfrac{{\ln 256}}{{\ln 5}} = {t_0} \approx 5,54\)

Ta có BBT của đồ thị hàm số \(y = f\left( t \right)\) như sau :

 

Để phương trình đã cho có nghiệm thì \(m \ge f\left( {{t_0}} \right)\). Mà \(m \in Z;\,\,m < 99\,\, \Rightarrow m \in \left\{ { - 1296; - 1205;...;0;1;2;...;98} \right\}\).

Vậy có 1395 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com