Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho x là số thực dương, số hạng không chứa x trong khai triển nhị thức \({\left( {x +

Câu hỏi số 303662:
Thông hiểu

Cho x là số thực dương, số hạng không chứa x trong khai triển nhị thức \({\left( {x + \dfrac{2}{{\sqrt x }}} \right)^{30}}\) là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:303662
Phương pháp giải

Sử dụng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \).

Giải chi tiết

Ta có \({\left( {x + \dfrac{2}{{\sqrt x }}} \right)^{30}} = \sum\limits_{k = 0}^{30} {C_{30}^k{x^{30 - k}}{{\left( {\dfrac{2}{{\sqrt x }}} \right)}^k}}  = \sum\limits_{k = 0}^{30} {C_{30}^k{x^{30 - k}}{2^k}{x^{ - \dfrac{k}{2}}}}  = \sum\limits_{k = 0}^{30} {C_{30}^k{2^k}{x^{30 - \dfrac{{3k}}{2}}}} \).

Số hạng không chứa x ứng với \(30 - \dfrac{{3k}}{2} = 0 \Leftrightarrow k = 20\).

Vậy số hạng không chứa x trong  khai triển trên là \(C_{30}^{20}{.2^{20}}=C_{30}^{10}{.2^{20}}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com