Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm các giá trị của tham số m \(\left( {m \in R} \right)\) để phương trình \({x^2} + \dfrac{1}{{{x^2}}}

Câu hỏi số 303677:
Vận dụng

Tìm các giá trị của tham số m \(\left( {m \in R} \right)\) để phương trình \({x^2} + \dfrac{1}{{{x^2}}} - \left( {{m^2} + m + 2} \right)\left( {x + \dfrac{1}{x}} \right) + {m^3} + 2m + 2 = 0\) có nghiệm thực:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:303677
Phương pháp giải

Đặt \(t = x + \dfrac{1}{x}\), đưa phương trình ban đầu về phương trình bậc hai ẩn t. Tìm điều kiện để phương trình ẩn t có nghiệm.

Giải chi tiết

ĐK : \(x \ne 0\).

Đặt \(t = x + \dfrac{1}{x} \Rightarrow {t^2} = {x^2} + \dfrac{1}{{{x^2}}} + 2 \Rightarrow {x^2} + \dfrac{1}{{{x^2}}} = {t^2} - 2\).

Ta có \(x + \dfrac{1}{x} = t \Leftrightarrow {x^2} - tx + 1 = 0;\,\,\Delta  = {t^2} - 4t \ge 0 \Leftrightarrow \left[ \begin{array}{l}t \ge 4\\t \le 0\end{array} \right.\).

Khi đó phương trình trở thành :

\({t^2} - 2 - \left( {{m^2} + m + 2} \right)t + {m^3} + 2m + 2 = 0 \Leftrightarrow {t^2} - \left( {{m^2} + m + 2} \right)t + {m^3} + 2m = 0\) (*).

Ta có

\(\begin{array}{l}\Delta  = {\left( {{m^2} + m + 2} \right)^2} - 4.\left( {{m^3} + 2m} \right) = {m^4} + {m^2} + 4 + 2{m^3} + 4{m^2} + 4m - 4{m^3} - 8m\\ = {m^4} - 2{m^3} + 5{m^2} - 4m + 4\\ = {m^4} - 2{m^3} + {m^2} + {m^2} - 4m + 4 + 3{m^2}\\ = {m^2}\left( {{m^2} - 2m + 1} \right) + {\left( {m - 2} \right)^2} + 3{m^2}\\ = {m^2}{\left( {m - 1} \right)^2} + {\left( {m - 2} \right)^2} + 3{m^2} > 0\,\,\forall m \in R\end{array}\)

Do đó phương trình (*) luôn có nghiệm t.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com