Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho các số thực a,b thay đổi, thỏa mãn \(a > \dfrac{1}{3},\,\,b > 1\). Khi biểu thức \(P = {\log

Câu hỏi số 303742:
Vận dụng cao

Cho các số thực a,b thay đổi, thỏa mãn \(a > \dfrac{1}{3},\,\,b > 1\). Khi biểu thức \(P = {\log _{3a}}b + {\log _b}\left( {{a^4} - 9{a^2} + 81} \right)\) đạt giá trị nhỏ nhất thì tổng \(a + b\) bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:303742
Giải chi tiết

Ta có: \({\left( {{a^2} - 9} \right)^2} \ge 0 \Leftrightarrow {a^4} - 18{a^2} + 81 \ge 0 \Leftrightarrow {a^4} - 9{a^2} + 81 \ge 9{a^2}\)

\( \Rightarrow P \ge {\log _{3a}}b + {\log _b}9{a^2} = {\log _{3a}}b + 2{\log _b}3a\mathop  \ge \limits^{Co - si} 2\sqrt {{{\log }_{3a}}b.2{{\log }_b}3a}  = 2\sqrt 2 \).

Dấu “=” xảy ra

\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 9\\{\log _{3a}}b = 2{\log _b}3a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\,\,\left( {Do\,\,a > 0} \right)\\{\log _9}b = 2{\log _b}9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\{\log _9}b = \dfrac{2}{{{{\log }_9}b}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\{\log _9}b = \sqrt 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = {9^{\sqrt 2 }}\end{array} \right.\)

Vậy \(a + b = 3 + {9^{\sqrt 2 }}\).

Chọn A.  

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com