Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình \({\sin ^2}x - \left( {2 + m} \right)\,\sin x + 2m = 0\) có nghiệm khi tham số \(m\) thỏa mãn

Câu hỏi số 304987:
Thông hiểu

Phương trình \({\sin ^2}x - \left( {2 + m} \right)\,\sin x + 2m = 0\) có nghiệm khi tham số \(m\) thỏa mãn điều kiện

Đáp án đúng là: D

Quảng cáo

Câu hỏi:304987
Phương pháp giải

Đặt \(t = \sin x\;\;\left( { - 1 \le t \le 1} \right).\) Khi đó phương trình đã cho có nghiệm \( \Leftrightarrow pt\) ẩn \(t\) có nghiệm \(t \in \left[ { - 1;\;1} \right].\)

Sau đó dùng MTCT để thử các đáp án.

Giải chi tiết

Đặt \(t = \sin x\;\;\left( { - 1 \le t \le 1} \right).\)

Khi đó ta có phương trình: \({t^2} - \left( {2 + m} \right)t + 2m = 0\;\;\left( * \right)\)

Phương trình đã cho có nghiệm \( \Leftrightarrow pt\;\;\left( * \right)\) có nghiệm \(t \in \left[ { - 1;\;1} \right]\)

+) Đáp án A: Thử với \(m = 4\) ta được: \(\left( * \right) \Leftrightarrow {t^2} - 6t + 8 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\; \notin \left[ { - 1;\;1} \right]\\t = 4\; \notin \left[ { - 1;\;1} \right]\end{array} \right. \Rightarrow m = 4\;\left( {ktm} \right)\)

\( \Rightarrow \) loại đáp án A, B.

+) Đáp án C: Thử với \(m = 2 \Rightarrow \left( * \right) \Leftrightarrow {t^2} - 4t + 4 = 0 \Leftrightarrow t = 2 \notin \left[ { - 1;\,1} \right] \Rightarrow m = 2\,\,\left( {ktm} \right)\)

\( \Rightarrow \) loại đáp án C.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com