Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({\log _{\sqrt 2 }}(x - 1) =

Câu hỏi số 305970:
Vận dụng

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({\log _{\sqrt 2 }}(x - 1) = {\log _2}(mx - 8)\) có hai nghiệm thực phân biệt?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:305970
Phương pháp giải

Giải phương trình bằng phương pháp xét hàm số.

Giải chi tiết

Điều kiện: \(\left\{ \begin{array}{l}x > 1\\mx > 8\end{array} \right..\)

Ta có: \({\log _{\sqrt 2 }}(x - 1) = {\log _2}(mx - 8)\,\,\,\,(1)\; \Leftrightarrow lo{g_2}{\left( {x - 1} \right)^2} = {\log _2}\left( {mx - 8} \right)\)

\( \Leftrightarrow {\left( {x - 1} \right)^2} = mx - 8 \Leftrightarrow {x^2} - 2x + 9 = m \Leftrightarrow x - 2 + \frac{9}{x} = m\;\;\;\left( {do\;\;x > 1} \right)\;\;\;\left( 2 \right)\)

Phương trình (1) có 2 nghiệm thực phân biệt \( \Leftrightarrow \) Phương trình (2) có 2 nghiệm thực phân biệt lớn hơn 1 (*)

Xét hàm số \(f\left( x \right) = x - 2 + \frac{9}{x},\,\,\,x > 1\) có \(f'\left( x \right) = 1 - \frac{9}{{{x^2}}},\,\,\,f'\left( x \right) = 0 \Leftrightarrow x = 3\)

Bảng biến thiên:

(*)\( \Leftrightarrow 4 < m < 8\). Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {5;6;7} \right\}\): có 3 giá trị của m thỏa mãn.

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com