Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đường thẳng \(d:\,\,y =  - x

Câu hỏi số 306595:
Vận dụng

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đường thẳng \(d:\,\,y =  - x + m\) cắt đồ thị hàm số \(y = \dfrac{{ - 2x + 1}}{{x + 1}}\) tại hai điểm phân biệt A, B sao cho \(AB \le 2\sqrt 2 \). Tổng giá trị tất cả các phần tử của S bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:306595
Phương pháp giải

+) Tìm điều kiện để phương trình hoành độ giao điểm.

+) Tính độ dài AB và áp dụng định lí Vi-ét.

Giải chi tiết

Xét phương trình hoành độ giao điểm

\(\begin{array}{l} - x + m = \dfrac{{ - 2x + 1}}{{x + 1}}\,\,\left( {x \ne  - 1} \right) \Leftrightarrow  - {x^2} - x + mx + m =  - 2x + 1\\ \Leftrightarrow {x^2} - \left( {m + 1} \right)x - m + 1 = 0\,\,\left( * \right)\end{array}\)

Để đường thẳng \(d:\,\,y =  - x + m\) cắt đồ thị hàm số \(y = \dfrac{{ - 2x + 1}}{{x + 1}}\) tại hai điểm phân biệt A, B thì phương trình (*) có 2 nghiệm phân biệt khác -1.

\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {m + 1} \right)^2} - 4\left( { - m + 1} \right) > 0\\1 + m + 1 - m + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 6m - 3 > 0\\3 \ne 0\,\,\left( {luon\,\,dung} \right)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m >  - 3 + 2\sqrt 3 \\m <  - 3 - 2\sqrt 3 \end{array} \right.\)

Gọi \(A\left( {{x_A}; - {x_A} + m} \right);\,\,B\left( {{x_B}; - {x_B} + m} \right)\), khi đó \({x_A},\,\,{x_B}\) là 2 nghiệm phân biệt của phương trình (*). Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_A} + {x_B} = m + 1\\{x_A}{x_B} =  - m + 1\end{array} \right.\).

Ta có:

\(\begin{array}{l}A{B^2} = {\left( {{x_A} - {x_B}} \right)^2} + {\left( { - {x_A} + m + {x_B} - m} \right)^2} = 2{\left( {{x_A} - {x_B}} \right)^2} = 2\left[ {{{\left( {{x_A} + {x_B}} \right)}^2} - 4{x_1}{x_2}} \right]\\ = 2\left[ {{{\left( {m + 1} \right)}^2} - 4\left( { - m + 1} \right)} \right] = 2\left( {{m^2} + 6m - 3} \right) \le 8 \Leftrightarrow {m^2} + 6m - 3 \le 4 \Leftrightarrow  - 7 \le m \le 1\end{array}\)

 Kết hợp điều kiện \( \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left[ { - 7; - 3 - 2\sqrt 3 } \right) \cup \left( { - 3 + 2\sqrt 3 ;1} \right]\end{array} \right. \Leftrightarrow S = \left\{ { - 7;1} \right\}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com