Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(C,\,\,CH\) vuông góc với \(AB\) tại

Câu hỏi số 306612:
Vận dụng cao

Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(C,\,\,CH\) vuông góc với \(AB\) tại \(H\), \(I\) là trung điểm của đoạn \(HC\). Biết \(SI\) vuông góc với mặt phẳng đáy, \(\angle ASB = {90^0}\). Gọi \(O\) là trung điểm của đoạn \(AB,\,\,O'\) là tâm mặt cầu ngoại tiếp tứ diện \(ABSI\), \(\alpha \) là góc giữa \(OO'\) và mặt phẳng \(\left( {ABC} \right)\). Tính \(\cos \alpha \).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:306612
Phương pháp giải

+) Chứng minh tam giác SHC đều, kẻ \(CK \bot SH\), chứng minh \(CK//OO'\).

+) \(CK//OO' \Rightarrow \angle \left( {OO';\left( {ABC} \right)} \right) = \angle \left( {CK;\left( {ABC} \right)} \right)\).

+) Xác định góc giữa \(CK\) và \(\left( {ABC} \right)\) và tính góc đó.

Giải chi tiết

Ta có: \(SI \bot \left( {ABC} \right) \Rightarrow SI \bot HC\).

Xét tam giác \(SHC\) có \(SI\) là trung tuyến đồng thời là đường cao \( \Rightarrow \Delta SHC\) cân tại \(S \Rightarrow SH = SC\,\,\left( 1 \right)\)

Ta có: \(\left\{ \begin{array}{l}AB \bot HC\\AB \bot SI\end{array} \right. \Rightarrow AB \bot \left( {SHC} \right) \Rightarrow AB \bot SH\).

Do \(\Delta ABC\) vuông tại C và \(\Delta SAB\) vuông tại S, lại có \(O\) là trung điểm của \(AB \Rightarrow OA = OB = OS = OC\).

Xét tam giác vuông \(OSH\) và tam giác vuông \(OCH\) có:

\(OS = OC\,\,\left( {cmt} \right);\,\,OH\,\,chung\)

\( \Rightarrow \Delta OSH = \Delta OCH\) (cạnh huyền – cạnh góc vuông) \( \Rightarrow SH = CH\,\,\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow \Delta SHC\) đều.

Gọi \(K\) là trung điểm của \(SH\) ta có \(CK \bot SH\).

Do \(AB \bot \left( {SHC} \right)\,\,\left( {cmt} \right) \Rightarrow AB \bot CK \Rightarrow CK \bot \left( {SAB} \right)\) (3).

Vì tam giác \(SAB\) vuông tại \(S \Rightarrow O\) là tâm đường tròn ngoại tiếp \(\Delta SAB\).

\(O'\) là tâm mặt cầu ngoại tiếp tứ diện \(ABSI \Rightarrow OO'\) là trục của \(\Delta SAB \Rightarrow OO' \bot \left( {SAB} \right)\)  (4).

Từ (3) và (4) \( \Rightarrow CK//OO' \Rightarrow \angle \left( {OO';\left( {ABC} \right)} \right) = \angle \left( {CK;\left( {ABC} \right)} \right)\).

Trong \(\left( {SHC} \right)\) kẻ \(KM//SI\,\,\left( {M \in CH} \right) \Rightarrow CM\) là hình chiếu của \(CK\) trên \(\left( {ABC} \right)\).

\( \Rightarrow \angle \left( {CK;\left( {ABC} \right)} \right) = \angle \left( {CK;CM} \right) =   \angle KCM = \angle KCH\).

Do tam giác \(SHC\) là tam giác đều (cmt) \( \Rightarrow \) Đường cao \(CK\) đồng thời là phân giác \( \Rightarrow \angle KCH = {30^0}\).

Vậy \(\angle \left( {OO';\left( {ABC} \right)} \right) = {30^0} \Rightarrow \alpha  = {30^0} \Rightarrow \cos \alpha  = \dfrac{{\sqrt 3 }}{2}\).

Chọn A. 

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com