Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp tứ giác đều \(S.ABCD\) với \(O\) là tâm của đáy và chiều cao \(SO = \dfrac{{\sqrt 3

Câu hỏi số 306615:
Thông hiểu

Cho hình chóp tứ giác đều \(S.ABCD\) với \(O\) là tâm của đáy và chiều cao \(SO = \dfrac{{\sqrt 3 }}{2}AB\). Tính góc giữa mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng đáy.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:306615
Phương pháp giải

+) Gọi \(H\) là trung điểm của \(AB\). Chứng minh \(\angle \left( {\left( {SAB} \right);\left( {ABCD} \right)} \right) = \angle SHO\).

+) Tính \(\tan \angle SHO\).

Giải chi tiết

Gọi \(H\) là trung điểm của \(AB\). Tam giác \(SAB\) cân tại \(S \Rightarrow SH \bot AB\).

Ta có: \(\left\{ \begin{array}{l}AB \bot SO\\AB \bot SH\end{array} \right. \Rightarrow AB \bot \left( {SHO} \right) \Rightarrow AB \bot OH\)

\(\left\{ \begin{array}{l}\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\\left( {SAB} \right) \supset SH \bot AB\\\left( {ABCD} \right) \supset OH \bot AB\end{array} \right. \Rightarrow \angle \left( {\left( {SAB} \right);\left( {ABCD} \right)} \right) = \angle \left( {SH;OH} \right) = \angle SHO\).

Xét tam giác vuông \(SHO\) có \(\tan \angle SHO = \dfrac{{SH}}{{OH}} = \dfrac{{\dfrac{{\sqrt 3 }}{2}AB}}{{\dfrac{{AB}}{2}}} = \sqrt 3  \Rightarrow \angle SHO = {60^0}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com