Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hai số thực dương \(x;y\) thỏa mãn \({2^{\ln \left( {\frac{{x + y}}{2}} \right)}}{.5^{\ln \left( {x + y}

Câu hỏi số 307430:
Vận dụng cao

Cho hai số thực dương \(x;y\) thỏa mãn \({2^{\ln \left( {\frac{{x + y}}{2}} \right)}}{.5^{\ln \left( {x + y} \right)}} = {2^{\ln 5}}.\) Tìm giá trị lớn nhất của biểu thức sau:

\(P = \left( {x + 1} \right)\ln x + \left( {y + 1} \right)\ln y\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:307430
Phương pháp giải

+) Sử dụng \({5^{\ln 2}} = {2^{\ln 5}}\), chia cả 2 vế cho \({5^{\ln \left( {x + y} \right)}} > 0\), tìm mối quan hệ giữa x và y.

+) Thế x theo y vào biểu thức P, đưa P về dạng \(P = f\left( x \right)\). Tìm GTLN của \(f\left( x \right)\).

Giải chi tiết

\(\begin{array}{l}{2^{\ln \left( {\frac{{x + y}}{2}} \right)}}{.5^{\ln \left( {x + y} \right)}} = {2^{\ln 5}} \Leftrightarrow {2^{\ln \left( {\frac{{x + y}}{2}} \right)}}{.5^{\ln \left( {x + y} \right)}} = {5^{\ln 2}}\\ \Leftrightarrow {2^{\ln \left( {\frac{{x + y}}{2}} \right)}} = {5^{\ln 2 - \ln \left( {x + y} \right)}} = {5^{\ln \frac{2}{{x + y}}}} = {5^{ - \ln \frac{{x + y}}{2}}} = {\left( {\frac{1}{5}} \right)^{\ln \frac{{x + y}}{2}}}\\ \Leftrightarrow \ln \left( {\frac{{x + y}}{2}} \right) = 0 \Leftrightarrow \frac{{x + y}}{2} = 1 \Leftrightarrow x + y = 2\end{array}\)

Khi đó ta có:

\(\begin{array}{l}P = \left( {x + 1} \right)\ln x + \left( {y + 1} \right)\ln y = \left( {x + 1} \right)\ln x + \left( {2 - x + 1} \right)\ln \left( {2 - x} \right)\\P = \left( {x + 1} \right)\ln x + \left( {3 - x} \right)\ln \left( {2 - x} \right) = f\left( x \right)\end{array}\)

ĐK: \(0 < x < 2\).

Xét hàm số  \(f\left( x \right) = \left( {x + 1} \right)\ln x + \left( {3 - x} \right)\ln \left( {2 - x} \right)\), sử dụng MTCT ta tìm được \(\mathop {\max }\limits_{\left( {0;2} \right)} f\left( x \right) = 0 \Leftrightarrow x = 1\)   

Vậy \({P_{\max }} = 0 \Leftrightarrow x = y = 1\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com