Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {0; - 2; - 1} \right);\,\,B\left( { - 2; - 4;3}

Câu hỏi số 308376:
Vận dụng cao

Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {0; - 2; - 1} \right);\,\,B\left( { - 2; - 4;3} \right);\,\,C\left( {1;3; - 1} \right)\). Tìm điểm \(M \in \left( {Oxy} \right)\) sao cho \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + 3\overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:308376
Phương pháp giải

+) Gọi \(I\left( {a;b;c} \right)\) thỏa mãn \(\overrightarrow {IA}  + \overrightarrow {IB}  + 3\overrightarrow {IC}  = \overrightarrow 0 \). Xác định tọa độ điểm I.

+) Chèn điểm I vào biểu thức đã cho.

+) Khi đó \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + 3\overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất \( \Leftrightarrow M{I_{\min }} \Leftrightarrow M\) là hình chiếu của I trên \(\left( {Oxy} \right)\).

Giải chi tiết

Gọi \(I\left( {a;b;c} \right)\) thỏa mãn \(\overrightarrow {IA}  + \overrightarrow {IB}  + 3\overrightarrow {IC}  = \overrightarrow 0 \).

Ta có: \(\left\{ \begin{array}{l}\overrightarrow {IA}  = \left( { - a; - 2 - b; - 1 - c} \right)\\\overrightarrow {IB}  = \left( { - 2 - a; - 4 - b;3 - c} \right)\\\overrightarrow {IC}  = \left( {1 - a;3 - b; - 1 - c} \right)\end{array} \right. \Rightarrow \overrightarrow {IA}  + \overrightarrow {IB}  + 3\overrightarrow {IC}  = \left( { - 5a + 1; - 5b + 3; - 5c + 1} \right)\)

\(\overrightarrow {IA}  + \overrightarrow {IB}  + 3\overrightarrow {IC}  = \overrightarrow 0  \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{1}{5}\\b = \dfrac{3}{5}\\c = \dfrac{1}{5}\end{array} \right. \Rightarrow I\left( {\dfrac{1}{5};\dfrac{3}{5};\dfrac{1}{5}} \right)\).

Khi đó ta có \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + 3\overrightarrow {MC} } \right| = \left| {\overrightarrow {MI}  + \overrightarrow {IA}  + \overrightarrow {MI}  + \overrightarrow {IB}  + 3\overrightarrow {MI}  + 3\overrightarrow {IC} } \right| = \left| {5\overrightarrow {MI} } \right| = 5MI\)

Khi đó \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + 3\overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất \( \Leftrightarrow M{I_{\min }} \Leftrightarrow M\) là hình chiếu của I trên \(\left( {Oxy} \right)\).\( \Rightarrow M\left( {\dfrac{1}{5};\dfrac{3}{5};0} \right)\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com