Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Tập
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.

Tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( {{e^{{x^2}}}} \right) = m\) có đúng 2 nghiệm thực là:
Đáp án đúng là: B
Quảng cáo
+) Đặt \(t = {e^{{x^2}}} > 0\), khi đó phương trình trở thành \(f\left( t \right) = m\).
+) Số nghiệm của phương trình \(f\left( t \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( t \right)\) và đường thẳng \(y = m\) song song với trục Ox.
Khi đặt \(t = {e^{{x^2}}} > 0\), thì với mỗi nghiệm \(t > 0\) sẽ cho ta 2 nghiệm thực \(x\) phân biệt.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












