Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Thể tích lớn nhất của khối trụ nội tiếp hình cầu có bán kính \(R\)

Câu hỏi số 308900:
Vận dụng cao

Thể tích lớn nhất của khối trụ nội tiếp hình cầu có bán kính \(R\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:308900
Phương pháp giải

+) Gọi \(h,\,r\) lần lượt là chiều cao và bán kính đáy của hình trụ.

+) Biểu diễn \(h\) theo \(R,\,\,r\).

+) Sử dụng công thức tính thể tích khối trụ là \(V = \pi {r^2}h\).

+) Sử dụng BĐT Cô-si cho ba số không âm \(\sqrt[3]{{abc}} \le \dfrac{{a + b + c}}{3}\).

Giải chi tiết

Gọi \(h,\,r\) lần lượt là chiều cao và bán kính đáy của hình trụ.

Áp dụng định lí Pytago ta có : \(h = 2\sqrt {{R^2} - {r^2}} \)

Khi đó ta có thể tích khối trụ là \(V = \pi {r^2}h = 2\pi {r^2}\sqrt {{R^2} - {r^2}}  = \sqrt 2 \pi \sqrt {{r^4}\left( {{R^2} - {r^2}} \right)}  = \sqrt {{r^2}.{r^2}\left( {2{R^2} - 2{r^2}} \right)} \)

Áp dụng BĐT Cô-si ta có :  \(\sqrt[3]{{{r^2}.{r^2}\left( {2{R^2} - 2{r^2}} \right)}} \le \dfrac{{{r^2} + {r^2} + \left( {2{R^2} - 2{r^2}} \right)}}{3} = \dfrac{{2{R^2}}}{3} \Rightarrow {r^2}.{r^2}\left( {2{R^2} - 2{r^2}} \right) = \dfrac{{8{R^6}}}{{27}}\)

\( \Rightarrow V \le \sqrt 2 \pi \sqrt {\dfrac{8}{{27}}{R^6}}  = \dfrac{{4\pi \sqrt 3 {R^3}}}{9}\).  Dấu "=" xảy ra \( \Leftrightarrow {r^2} = 2{R^2} - 2{r^2} \Leftrightarrow r = \dfrac{2}{3}R \Rightarrow \dfrac{{R\sqrt 6 }}{3}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com