Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({9^x} + {6^x} - m{.4^x} = 0\) có

Câu hỏi số 308901:
Vận dụng

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({9^x} + {6^x} - m{.4^x} = 0\) có nghiệm là :

Đáp án đúng là: D

Quảng cáo

Câu hỏi:308901
Phương pháp giải

Chia cả 2 vế cho \({4^x} > 0\). Đưa phương trình về dạng \(f\left( x \right) = m\) . Tìm điều kiện để phương trình có nghiệm.

Giải chi tiết

Chia cả 2 vế cho \({4^x} > 0\) ta được \({\left( {\dfrac{3}{2}} \right)^{2x}} + {\left( {\dfrac{3}{2}} \right)^x} - m = 0\).

Đặt \(t = {\left( {\dfrac{3}{2}} \right)^x}\) phương trình trở thành \({t^2} + t - m = 0 \Leftrightarrow f\left( t \right) = {t^2} + t = m\,\,\,\left( * \right)\).

Để phương trình ban đầu có nghiệm thì phương trình (*) có nghiệm \(t > 0\).

Xét hàm số \(f\left( t \right) = 2t + 1 = 0 \Leftrightarrow t = \dfrac{{ - 1}}{2}\).

BBT:

Dựa vào BBT ta thấy (*) có nghiệm \(t > 0 \Leftrightarrow m > 0\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com