Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho mặt cầu tâm \(O\) và tam giác \(ABC\) có ba đỉnh nằm trên mặt cầu với góc \(\angle BAC =

Câu hỏi số 310846:
Vận dụng

Cho mặt cầu tâm \(O\) và tam giác \(ABC\) có ba đỉnh nằm trên mặt cầu với góc \(\angle BAC = {30^0}\) và \(BC = a\) . Gọi \(S\) là điểm nằm trên mặt cầu, không thuộc mặt phẳng \(\left( {ABC} \right)\) và thỏa mãn \(SA = SB = SC,\) góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\) . Tính thể tích \(V\) của khối cầu tâm \(O\) theo \(a.\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:310846
Phương pháp giải

Thể tích khối cầu có bán kính \(R:\;\;V = \frac{4}{3}\pi {R^3}.\)

Giải chi tiết

Theo đề bài ta có: \(SA = SB = SC \Rightarrow \) hình chiếu vuông góc của đỉnh \(S\) trên \(\left( {ABC} \right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC.\)

Gọi \(I\) là tâm mặt cầu ngoại tiếp \(\Delta ABC \Rightarrow SI \bot \left( {ABC} \right).\)

\( \Rightarrow O \in SI\;\;hay\;\;S,\;I,\;O\) thẳng hàng.

Ta có: \(\angle \left( {SA;\;\left( {ABC} \right)} \right) = \angle \left( {SA,\;AI} \right) = \angle SAI = {60^0}.\)

Xét \(\Delta SAI\) ta có: \(SI = SA.\sin {60^0} = \frac{{SA\sqrt 3 }}{2}.\)

Kẻ \(OM \bot SA \Rightarrow \Delta SMO \sim \Delta SAI\;\;\left( {g - g} \right)\)

\(\begin{array}{l} \Rightarrow \frac{{SO}}{{SA}} = \frac{{SM}}{{SI}} \Rightarrow SO = \frac{{SM.SA}}{{SI}} = \frac{{S{A^2}}}{{2SI}} = \frac{{S{A^2}}}{{2.\frac{{SA\sqrt 3 }}{2}}} = \frac{{SA\sqrt 3 }}{3} = R.\\ \Rightarrow OI = SI - OI = \frac{{SA\sqrt 3 }}{2} - \frac{{SA\sqrt 3 }}{3} = \frac{{SA\sqrt 3 }}{6}.\\ \Rightarrow IA = \sqrt {{R^2} - O{I^2}}  = \sqrt {{{\left( {\frac{{SA\sqrt 3 }}{3}} \right)}^2} - {{\left( {\frac{{SA\sqrt 3 }}{6}} \right)}^2}}  = \frac{{SA}}{2} = {R_{ABC}}\end{array}\)

Với \({R_{ABC}}\) là bán kính đường tròn ngoại tiếp \(\Delta ABC.\)

Áp dụng định lý hàm số sin trong \(\Delta ABC\) ta có: \(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{a}{{\sin {{30}^0}}} = 2{R_{ABC}} = 2a \Leftrightarrow {R_{ABC}} = a.\\ \Rightarrow IA = a \Rightarrow SA = 2{R_{ABC}} = 2a.\\ \Rightarrow R = \frac{{SA\sqrt 3 }}{3} = \frac{{2a\sqrt 3 }}{3}.\\ \Rightarrow {V_{cau}} = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {\frac{{2a\sqrt 3 }}{3}} \right)^3} = \frac{{32\sqrt 3 \pi {a^3}}}{{27}}.\end{array}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com