Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = \frac{1}{3}{x^3} - 2m{x^2} + \left( {m - 1} \right)x + 2{m^2} + 1\) \((m\) là tham số). Xác

Câu hỏi số 310898:
Vận dụng

Cho hàm số \(y = \frac{1}{3}{x^3} - 2m{x^2} + \left( {m - 1} \right)x + 2{m^2} + 1\) \((m\) là tham số). Xác định khoảng cách lớn nhất từ gốc tọa độ \(O\left( {0;0} \right)\) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:310898
Phương pháp giải

+) Lấy y chia y’, phần dư chính là phương trình tiếp tuyến đi qua 2 điểm cực trị của hàm số.

+) Sử dụng công thức tính khoảng cách từ 1 điểm \(M\left( {{x_0};{y_0}} \right)\) đến đường thẳng \(\left( d \right):\,\,ax + by + c = 0\) là \(d\left( {M;d} \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).

+) Xét hàm số và tìm GTLN của hàm số bằng cách lập BBT.

Giải chi tiết

TXĐ: \(D = \mathbb{R}\). Ta có \(y' = {x^2} - 4mx + m - 1\).

Lấy \(y\) chia cho \(y'\)  ta được \(y = y'\left( {\frac{1}{3}x - \frac{2}{3}m} \right) + \left( { - \frac{8}{3}{m^2} + \frac{2}{3}m - \frac{2}{3}} \right)x + \frac{8}{3}{m^2} - \frac{2}{3}m + 1\)

\( \Rightarrow \) Phương trình đường thẳng đi qua 2 điểm cực trị của hàm số là \(y = \left( { - \frac{8}{3}{m^2} + \frac{2}{3}m - \frac{2}{3}} \right)x + \frac{8}{3}{m^2} - \frac{2}{3}m + 1\).

\(\begin{array}{l} \Leftrightarrow \left( { - \frac{8}{3}{m^2} + \frac{2}{3}m - \frac{2}{3}} \right)x - y + \frac{8}{3}{m^2} - \frac{2}{3}m + 1 = 0\\ \Leftrightarrow \left( { - 8{m^2} + 2m - 2} \right)x - 3y + 8{m^2} - 2m + 3 = 0\,\,\left( d \right)\\ \Rightarrow d\left( {O;d} \right) = \frac{{\left| {8{m^2} - 2m + 3} \right|}}{{\sqrt {{{\left( { - 8{m^2} + 2m - 2} \right)}^2} + 9} }} = \sqrt {\frac{{{{\left( {8{m^2} - 2m + 3} \right)}^2}}}{{{{\left( { - 8{m^2} + 2m - 2} \right)}^2} + 9}}} \end{array}\)

Đặt \(t =  - 8{m^2} + 2m - 2 \Rightarrow  - t + 1 = 8{m^2} - 2m + 3\)

\( \Rightarrow d\left( {O;d} \right) = \sqrt {\frac{{{{\left( { - t + 1} \right)}^2}}}{{{t^2} + 9}}} \).

Xét hàm số \(f\left( t \right) = \frac{{{{\left( { - t + 1} \right)}^2}}}{{{t^2} + 9}}\) ta có \(f'\left( t \right) = \frac{{ - 2\left( { - t + 1} \right)\left( {{t^2} + 9} \right) - {{\left( { - t + 1} \right)}^2}.2t}}{{{{\left( {{t^2} + 10} \right)}^2}}} = \frac{{2{t^2} + 16t - 18}}{{{{\left( {{t^2} + 10} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t =  - 9\end{array} \right.\).

BBT:

\( \Rightarrow d{\left( {O;d} \right)_{\max }} = \frac{{\sqrt {10} }}{3}\) .

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com