Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Có bao nhiêu số phức z thỏa mãn \(\left| {z - 2i} \right| = \sqrt 2 \) và \({z^2}\) là số thuần

Câu hỏi số 311237:
Thông hiểu

Có bao nhiêu số phức z thỏa mãn \(\left| {z - 2i} \right| = \sqrt 2 \) và \({z^2}\) là số thuần ảo?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:311237
Phương pháp giải

Gọi số phức đó là \(z = a + bi,\,\,\left( {a,b \in \mathbb{R}} \right)\). Tìm điều kiện của a, b.

Giải chi tiết

Gọi số phức đó là\(z = a + bi,\,\,\left( {a,b \in \mathbb{R}} \right)\), ta có:

\(\left| {z - 2i} \right| = \sqrt 2  \Leftrightarrow \left| {a + bi - 2i} \right| = \sqrt 2  \Leftrightarrow {a^2} + {\left( {b - 2} \right)^2} = 2\) (1)

\({z^2} = {\left( {a + bi} \right)^2} = \left( {{a^2} - {b^2}} \right) + 2abi\) là số thuần ảo \( \Rightarrow {a^2} - {b^2} = 0 \Leftrightarrow \left[ \begin{array}{l}a = b\\a =  - b\end{array} \right.\)

+) \(a = b\). Thay vào (1): \({a^2} + {\left( {a - 2} \right)^2} = 2 \Leftrightarrow 2{a^2} - 4a + 2 = 0 \Leftrightarrow a = 1 \Rightarrow a = b = 1 \Rightarrow z = 1 + i\)

+) \(a =  - b\). Thay vào (1): \({a^2} + {\left( { - a - 2} \right)^2} = 2 \Leftrightarrow 2{a^2} + 4a + 2 = 0 \Leftrightarrow a =  - 1 \Rightarrow a =  - 1,\,\,b = 1 \Rightarrow z =  - 1 + i\)

Vậy, có 2 số phức z thỏa mãn yêu cầu đề bài.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com