Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

 Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau \(y = \sqrt x ,y = 1\) và đường thẳng

Câu hỏi số 311239:
Vận dụng

 Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau \(y = \sqrt x ,y = 1\) và đường thẳng \(x = 4\) (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng \(y = 1\) bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:311239
Phương pháp giải

Cho hai hàm số \(y{\rm{ }} = {\rm{ }}f\left( x \right)\)và \(y{\rm{ }} = {\rm{ }}g\left( x \right)\)liên tục trên [a; b]. Khi đó thể tích vật thể tròn xoay giới hạn bởi hai đồ thị số \(y{\rm{ }} = {\rm{ }}f\left( x \right)\), \(y{\rm{ }} = {\rm{ }}g\left( x \right)\)và hai đường thẳng \(x{\rm{ }} = {\rm{ }}a;{\rm{ }}y{\rm{ }} = {\rm{ }}b\)khi quay quanh trục Ox là:

  \(V=~\pi \int_{a}^{b}{\left| {{f}^{2}}(x)-{{g}^{2}}(x) \right|dx}\)

Giải chi tiết

Đặt \(\left\{ \begin{array}{l}X = x - 1\\Y = y - 1\end{array} \right.\). Ta được hệ trục tọa độ \(OXY\) như hình vẽ:

Ta có: \(y = \sqrt x  \Leftrightarrow Y + 1 = \sqrt {X + 1}  \Leftrightarrow Y = \sqrt {X + 1}  - 1\)

Thể tích cần tìm là:

\(\begin{array}{l}V = \pi \int_0^3 {{{\left( {\sqrt {X + 1}  - 1} \right)}^2}dX}  = \pi \int_0^3 {\left( {X + 2 - 2\sqrt {X + 1} } \right)dX} \\\,\,\,\,\, = \pi \left. {\left( {\frac{1}{2}{X^2} + 2X - \frac{4}{3}\left( {X + 1} \right)\sqrt {X + 1} } \right)} \right|_0^3\\\,\,\,\,\, = \pi \left. {\left( {\frac{1}{2}{X^2} + 2X - \frac{4}{3}\left( {X + 1} \right)\sqrt {X + 1} } \right)} \right|_0^3\\\,\,\,\,\, = \pi \left[ {\left( {\frac{9}{2} + 6 - \frac{{32}}{3}} \right) - \left( { - \frac{4}{3}} \right)} \right] = \frac{{7\pi }}{6}\end{array}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com