Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: \(f\left( 0

Câu hỏi số 311286:
Vận dụng cao

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: \(f\left( 0 \right) = 2\sqrt 2 \), \(f\left( x \right) > 0,\forall x \in \mathbb{R}\) và \(f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\,\forall x \in \mathbb{R}\). Khi đó giá trị \(f\left( 1 \right)\) bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:311286
Phương pháp giải

Chia cả hai vế cho \(\sqrt {1 + {f^2}\left( x \right)} \) rồi lấy nguyên hàm hai vế tìm \(f\left( x \right)\).

Giải chi tiết

Ta có: \(f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} \)

\( \Rightarrow \dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }} = 2x + 1 \Rightarrow \int {\dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx}  = \int {\left( {2x + 1} \right)dx} \)

Tính \(\int {\dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} \) ta đặt \(\sqrt {1 + {f^2}\left( x \right)}  = t \Rightarrow 1 + {f^2}\left( x \right) = {t^2} \Rightarrow 2f\left( x \right)f'\left( x \right)dx = 2tdt\) \( \Rightarrow f\left( x \right)f'\left( x \right)dx = tdt\)

Thay vào ta được \(\int {\dfrac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx}  = \int {\dfrac{{tdt}}{t}}  = \int {dt}  = t + C = \sqrt {1 + {f^2}\left( x \right)}  + C\)

Do đó \(\sqrt {1 + {f^2}\left( x \right)}  + C = {x^2} + x\).

\(f\left( 0 \right) = 2\sqrt 2  \Rightarrow \sqrt {1 + {{\left( {2\sqrt 2 } \right)}^2}}  + C = 0 \Leftrightarrow C =  - 3\).

Từ đó:

\(\begin{array}{l}\sqrt {1 + {f^2}\left( x \right)}  - 3 = {x^2} + x \Rightarrow \sqrt {1 + {f^2}\left( 1 \right)}  - 3 = 1 + 1 \Leftrightarrow \sqrt {1 + {f^2}\left( 1 \right)}  = 5\\ \Leftrightarrow 1 + {f^2}\left( 1 \right) = 25 \Leftrightarrow {f^2}\left( 1 \right) = 24 \Leftrightarrow f\left( 1 \right) = \sqrt {24} \end{array}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com