Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Có bao nhiêu giá trị của tham số \(m\) để giá trị lớn nhất của hàm số \(y = \dfrac{{x - {m^2} -

Câu hỏi số 311293:
Vận dụng

Có bao nhiêu giá trị của tham số \(m\) để giá trị lớn nhất của hàm số \(y = \dfrac{{x - {m^2} - 2}}{{x - m}}\) trên đoạn \(\left[ {0;\,4} \right]\) bằng \( - 1.\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:311293
Phương pháp giải

Tính \(y'\) rồi đánh giá để chỉ ra hàm số đồng biến trên từng khoảng xác định.

Từ đó tìm giá trị lớn nhất của hàm số trên \(\left[ {a;b} \right]\).

Giải chi tiết

ĐK : \(x \ne m\)

Ta có \(y' = \dfrac{{{m^2} - m + 2}}{{{{\left( {x - m} \right)}^2}}}\)  nhận thấy\({m^2} - m + 2 = {\left( {m - \dfrac{1}{2}} \right)^2} + \dfrac{7}{4} > 0;\,\forall m\)  nên \(y' > 0;\,\forall m\)

Hay hàm số đồng bến trên từng khoảng xác định.

Để hàm số đạt GTLN trên \(\left[ {0;4} \right]\) thì \(m \in \left[ {0;4} \right] \Leftrightarrow \left[ \begin{array}{l}m < 0\\m > 4\end{array} \right.\)

Suy ra \(\mathop {\max }\limits_{\left[ {0;4} \right]} y = y\left( 4 \right) = \dfrac{{4 - {m^2} - 2}}{{4 - m}}\,\) . Theo bài ra ta có

\(\dfrac{{4 - {m^2} - 2}}{{4 - m}} =  - 1 \Rightarrow  - {m^2} + 2 = m - 4 \Leftrightarrow {m^2} + m - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 2\,\,\,\left( {ktm} \right)\\m =  - 3\,\,\left( {tm} \right)\end{array} \right.\)

Vậy có một giá trị của \(m\) thỏa mãn.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com