Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình của một mặt

Câu hỏi số 311321:
Nhận biết

Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình của một mặt cầu?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:311321
Phương pháp giải

\({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) là phương trình mặt cầu khi và chỉ khi \({a^2} + {b^2} + {c^2} - d > 0\).

Giải chi tiết

+) \({x^2} + {y^2} - 2x + 4y - 1 = 0\), \({x^2} + {z^2} - 2x + 6z - 2 = 0\) không phải phương trình của một mặt cầu

+) \({x^2} + {y^2} + {z^2} - 2x + 4y + 3z + 7 = 0\) có : \({a^2} + {b^2} + {c^2} - d = {1^2} + {2^2} + {\left( {\dfrac{3}{2}} \right)^2} - 7 = \dfrac{1}{4} > 0\)

\( \Rightarrow \)\({x^2} + {y^2} + {z^2} - 2x + 4y + 3z + 7 = 0\) có là phương trình mặt cầu.

+) \({x^2} + {y^2} + {z^2} - 2x + 4y + 3z + 8 = 0\) có : \({a^2} + {b^2} + {c^2} - d = {1^2} + {2^2} + {\left( {\dfrac{3}{2}} \right)^2} - 8 =  - \dfrac{3}{4} < 0\)

\( \Rightarrow \)\({x^2} + {y^2} + {z^2} - 2x + 4y + 3z + 8 = 0\) không phải là phương trình mặt cầu.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com