Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho cấp số nhân \({u_1},\,{u_2},\,{u_3},...,{u_n}\) với công bội \(q\) \(\left( {q \ne 0,q \ne 1} \right)\).

Câu hỏi số 311850:
Nhận biết

Cho cấp số nhân \({u_1},\,{u_2},\,{u_3},...,{u_n}\) với công bội \(q\) \(\left( {q \ne 0,q \ne 1} \right)\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). Khi đó, ta có: 

Đáp án đúng là: A

Quảng cáo

Câu hỏi:311850
Phương pháp giải

Sử dụng công thức tính tổng của n số hạng đầu của cấp số nhân có số hạng đầu tiên là \({u_1}\) và công bội \(q\) là \({S_n} = \dfrac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).

Giải chi tiết

\({S_n} = \dfrac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} \Leftrightarrow {S_n} = \dfrac{{{u_1}\left( {{q^n} - 1} \right)}}{{q - 1}}\).

Chọn: A

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com