Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác vuông tại \(A\), \(AB = a,AC = a\sqrt 2 \). Biết góc

Câu hỏi số 312035:
Vận dụng

Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác vuông tại \(A\), \(AB = a,AC = a\sqrt 2 \). Biết góc giữa mặt phẳng \(\left( {A'BC} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\) và hình chiếu vuông góc của \(A'\) trên \(\left( {ABC} \right)\) là trung điểm \(H\) của \(AB\). Tính thể tích \(V\) của khối lăng trụ đó.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:312035
Phương pháp giải

- Xác định góc \({60^0}\) (góc giữa hai đường thẳng cùng vuông góc với giao tuyến).

- Tính diện tích đáy và chiều cao rồi suy ra thể tích theo công thức \(V = Sh\).

Giải chi tiết

Gọi \(D,E\) lần lượt là hình chiếu của \(H,A\) lên \(BC\).

Ta thấy: \(\left\{ \begin{array}{l}HD \bot BC\\A'H \bot BC\end{array} \right. \Rightarrow \left( {A'HD} \right) \bot BC \Rightarrow A'D \bot BC\).

Khi đó \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) chính là góc giữa hai đường thẳng \(A'D\) và \(HD\) hay \(\angle A'DH = {60^0}\).

Xét tam giác vuông \(ABC\) có \(AB \bot AC \Rightarrow BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {{a^2} + 2{a^2}}  = a\sqrt 3 \).

Nên \(AE = \frac{{AB.AC}}{{BC}} = \frac{{a.a\sqrt 2 }}{{a\sqrt 3 }} = \frac{{a\sqrt 6 }}{3}\) suy ra \(HD = \frac{1}{2}AE = \frac{1}{2}.\frac{{a\sqrt 6 }}{3} = \frac{{a\sqrt 6 }}{6}\).

Từ đó \(A'H = HD.\tan {60^0} = \frac{{a\sqrt 6 }}{6}.\sqrt 3  = \frac{{a\sqrt 2 }}{2}\).

Vậy \({V_{ABC.A'B'C'}} = {S_{ABC}}.A'H = \frac{1}{2}AB.AC.A'H = \frac{1}{2}a.a\sqrt 2 .\frac{{a\sqrt 2 }}{2} = \frac{{{a^3}}}{2}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com