Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu số nguyên dương \(m\) sao cho đường thẳng \(y = x + m\) cắt đồ thị hàm số \(y =

Câu hỏi số 312037:
Vận dụng

Có bao nhiêu số nguyên dương \(m\) sao cho đường thẳng \(y = x + m\) cắt đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\) tại hai điểm phân biệt \(A,B\) và \(AB \le 4\)?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:312037
Phương pháp giải

- Xét phương trình hoành độ giao điểm.

- Đưa điều kiện bài toán về điều kiện tương đương đối với phươn trình hoành độ vừa xét.

Giải chi tiết

TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}.\)

Xét phương trình hoành độ giao điểm:

\(\frac{{2x - 1}}{{x + 1}} = x + m \Leftrightarrow 2x - 1 = \left( {x + 1} \right)\left( {x + m} \right) \Leftrightarrow {x^2} + \left( {m - 1} \right)x + m + 1 = 0\,\,\,\left( 1 \right)\).

Đường thẳng \(y = x + m\) cắt đồ thị hàm số tại \(2\) điểm phân biệt \( \Leftrightarrow \) phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt khác \( - 1\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta  = {\left( {m - 1} \right)^2} - 4\left( {m + 1} \right) = {m^2} - 6m - 3 > 0\\{\left( { - 1} \right)^2} + \left( {m - 1} \right).\left( { - 1} \right) + m + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 3 + 2\sqrt 3 \\m < 3 - 2\sqrt 3 \end{array} \right.\\3 \ne 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m > 3 + 2\sqrt 3 \\m < 3 - 2\sqrt 3 \end{array} \right.\).

Gọi tọa độ giao điểm \(A\left( {{x_1};{x_1} + m} \right),B\left( {{x_2};{x_2} + m} \right)\) với \({x_1},{x_2}\) là nghiệm của \(\left( 1 \right)\).

Khi đó \(A{B^2} = 2{\left( {{x_2} - {x_1}} \right)^2} \Rightarrow AB \le 4 \Leftrightarrow A{B^2} \le 16 \Leftrightarrow 2{\left( {{x_2} - {x_1}} \right)^2} \le 16\) \(\begin{array}{l} \Leftrightarrow {\left( {{x_2} - {x_1}} \right)^2} \le 8 \Leftrightarrow {\left( {{x_2} + {x_1}} \right)^2} - 4{x_1}{x_2} \le 8\\ \Leftrightarrow {\left( {1 - m} \right)^2} - 4\left( {m + 1} \right) \le 8 \Leftrightarrow {m^2} - 6m - 3 - 8 \le 0\\ \Leftrightarrow {m^2} - 6m - 11 \le 0 \Leftrightarrow 3 - 2\sqrt 5  \le m \le 3 + 2\sqrt 5 \end{array}\)

Kết hợp với \(\left[ \begin{array}{l}m > 3 + 2\sqrt 3 \\m < 3 - 2\sqrt 3 \end{array} \right.\) ta được \(\left[ \begin{array}{l}3 + 2\sqrt 3  < m \le 3 + 2\sqrt 5 \\3 - 2\sqrt 5  \le m < 3 - 2\sqrt 3 \end{array} \right.\).

Mà \(m\) nguyên dương nên \(m = 7\).

Vậy chỉ có duy nhất \(1\) giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com