Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(2.\) Gọi \(M,N\) lần lượt là hai điểm nằm trên

Câu hỏi số 312054:
Vận dụng cao

Cho lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(2.\) Gọi \(M,N\) lần lượt là hai điểm nằm trên cạnh \(AA',BB'\) sao cho \(M\) là trung điểm của \(AA'\) và \(BN = \frac{1}{2}NB'.\) Đường thẳng \(CM\) cắt đường thẳng \(C'A'\) tại \(P,\) đường thẳng \(CN\) cắt đường thẳng \(C'B'\) tại \(Q.\) Tính thể tích \(V\) của khối đa diện \(A'MPB'NQ.\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:312054
Phương pháp giải

Phân chia khối hộp để tính thể tích \({V_{C.ABNM}} \Rightarrow {V_{CC'B'NMA'}}\)

Tính thể tích khối chóp \({V_{C.C'A'B'}} \Rightarrow {V_{C.C'PQ}}\)

Tính \({V_{A'MPB'NQ}} = {V_{C.C'PQ}} - {V_{CC'B'NMA'}}\)

Sử dụng công thức tính thể tích khối chóp \(V = \frac{1}{3}h.S\) với \(h\) là chiều cao hình chóp và \(S\) là diện tích đáy.

Công thức tính thể tích lăng trụ \(V = h.S\) với \(h\) là chiều cao hìnhlăng trụ và \(S\) là diện tích đáy.

Giải chi tiết

Ta có \({V_{C.A'B'C'}} = \frac{1}{3}d\left( {C,\left( {A'B'C'} \right)} \right).{S_{A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}} = \frac{2}{3}\)

Suy ra \({V_{C.ABB'A'}} = {V_{ABC.A'B'C'}} - {V_{C.A'B'C'}} = 2 - \frac{2}{3} = \frac{4}{3}\)

Ta thấy \(ABNM\) là hình thang nên

\(\begin{array}{l}{S_{ABNM}} = \frac{{\left( {AM + BN} \right)d\left( {BN;AM} \right)}}{2} = \frac{{\left( {\frac{{AA'}}{2} + \frac{{BB'}}{3}} \right).d\left( {BB',AA'} \right)}}{2}\\ = \frac{{\left( {\frac{{AA'}}{2} + \frac{{AA'}}{3}} \right).d\left( {BB',AA'} \right)}}{2} = \frac{5}{{12}}AA'.d\left( {BB',AA'} \right)\end{array}\)

Mà \({S_{ABB'A'}} = AA'.d\left( {AA',BB'} \right) \Rightarrow {S_{ABNM}} = \frac{5}{{12}}.{S_{ABB'A'}}\)

 \(\begin{array}{l} \Rightarrow {V_{C.ABNM}} = \frac{1}{3}d\left( {C,\left( {ABNM} \right)} \right).{S_{ABNM}} = \frac{1}{3}d\left( {C,\left( {ABB'A'} \right)} \right).\frac{5}{{12}}.{S_{ABB'A'}}\\ = \frac{5}{{12}}.\frac{1}{3}d\left( {C,\left( {ABB'A'} \right)} \right).{S_{ABB'A'}} = \frac{5}{{12}}.{V_{CABB'A'}}.\end{array}\)

Mà \({V_{C.ABB'A'}} = \frac{4}{3}\left( {cmt} \right) \Rightarrow {V_{C.ABNM}} = \frac{5}{{12}}.\frac{4}{3} = \frac{5}{9}.\)

Suy ra \({V_{CC'B'NMA'}} = {V_{ABC.A'B'C'}} - {V_{C.ABNM}} = 2 - \frac{5}{9} = \frac{{13}}{9}.\)

Ta có \(A'M//CC' \Rightarrow \frac{{PA'}}{{PC'}} = \frac{{A'M}}{{CC'}} = \frac{1}{2} \Rightarrow PA' = \frac{1}{2}PC' = A'C' \Rightarrow PC' = 2A'C'\)

Và \(B'N//CC' \Rightarrow \frac{{B'N}}{{CC'}} = \frac{{QB'}}{{QC'}} = \frac{2}{3} \Rightarrow QC' = 3B'C'\)

Mà \({S_{A'B'C'}} = \frac{1}{2}C'A'.C'B'\sin C'\) 

\( \Rightarrow {S_{C'PQ}} = \frac{1}{2}C'P.C'Q.\sin C' = \frac{1}{2}.2.A'C'.3B'C'\sin C = 6.\left( {\frac{1}{2}A'C'.B'C'\sin C} \right) = 6{S_{A'B'C'}}\)

Ta có: \({V_{C.C'PQ}} = \frac{1}{3}d\left( {C;\left( {A'B'C'} \right)} \right).{S_{C'PQ}} = \frac{1}{3}d\left( {C;\left( {A'B'C'} \right)} \right).6{S_{C'A'B'}} = 6.{V_{C.A'B'C'}} = 6.\frac{2}{3} = 4.\)

Từ đó \({V_{A'MPB'NQ}} = {V_{C.C'PQ}} - {V_{CC'B'NMA'}} = 4 - \frac{{13}}{9} = \frac{{23}}{9}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com