Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) có đạo hàm và liên tục trên \(\mathbb{R}\) thỏa mãn \(f\left( {{x^3} + 2x - 2} \right) = 3x - 1\). Tính \(I = \int\limits_1^{10} {f\left( x \right)} dx\). 

Câu 312475: Cho hàm số \(f\left( x \right)\) có đạo hàm và liên tục trên \(\mathbb{R}\) thỏa mãn \(f\left( {{x^3} + 2x - 2} \right) = 3x - 1\). Tính \(I = \int\limits_1^{10} {f\left( x \right)} dx\). 

A. \(\dfrac{{135}}{4}\).

B. \(\dfrac{{125}}{4}\).

C. \(\dfrac{{105}}{4}\).

D. \(\dfrac{{75}}{4}\).

Câu hỏi : 312475

Phương pháp giải:

Đặt ẩn phụ \(t = {x^3} + 2x - 2\)

  • Đáp án : A
    (3) bình luận (0) lời giải

    Giải chi tiết:

    \(I = \int\limits_1^{10} {f\left( x \right)} dx = \int\limits_1^{10} {f\left( t \right)} dt\)

    Đặt \(t = {x^3} + 2x - 2 \Rightarrow dt = \left( {3{x^2} + 2} \right)dx\)

    Đổi cận:  \(t = 1 \Rightarrow {x^3} + 2x - 2 = 1 \Leftrightarrow {x^3} + 2x - 3 = 0 \Leftrightarrow x = 1\)

                  \(t = 10 \Rightarrow {x^3} + 2x - 2 = 10 \Leftrightarrow {x^3} + 2x - 12 = 0 \Leftrightarrow x = 2\)

     \(\begin{array}{l} \Rightarrow I = \int\limits_1^2 {f\left( {{x^3} + 2x - 2} \right)} .\left( {3{x^2} + 2} \right)dx = \int\limits_1^2 {\left( {3x - 1} \right)} .\left( {3{x^2} + 2} \right)dx = \int\limits_1^2 {\left( {9{x^3} - 3{x^2} + 6x - 2} \right)} dx\\\,\,\,\,\,\,\,\,\, = \left. {\left( {\dfrac{9}{4}{x^4} - {x^3} + 3{x^2} - 2x} \right)} \right|_1^2 = \left( {36 - 8 + 12 - 4} \right) - \left( {\dfrac{9}{4} - 1 + 3 - 2} \right) = 36 - \left( {\dfrac{9}{4}} \right) = \dfrac{{135}}{4}\end{array}\)

    Chọn: A

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com