Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(f\left( x \right) = m\left( {m + 2} \right){x^2} - 2mx + 2\). Tìm m để \(f\left( x \right) = 0\) có hai

Câu hỏi số 315561:
Vận dụng

Cho \(f\left( x \right) = m\left( {m + 2} \right){x^2} - 2mx + 2\). Tìm m để \(f\left( x \right) = 0\) có hai nghiệm dương phân biệt.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:315561
Phương pháp giải

Phương trình \(a{x^2} + bx + c = 0\)  có hai nghiệm dương phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta  > 0\\S > 0\\P > 0\end{array} \right..\)

Giải chi tiết

Phương trình \(m\left( {m + 2} \right){x^2} - 2mx + 2 = 0\) có hai nghiệm dương phân biệt

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}m\left( {m + 2} \right) \ne 0\\\Delta ' = {m^2} - 2m\left( {m + 2} \right) > 0\\S = \frac{{2m}}{{m\left( {m + 2} \right)}} > 0\\P = \frac{2}{{m\left( {m + 2} \right)}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ne  - 2\\ - {m^2} - 4m > 0\\\frac{{2m}}{{m\left( {m + 2} \right)}} > 0\\m\left( {m + 2} \right) > 0\;\;\left( {do\;2 > 0} \right)\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ne  - 2\\m\left( {m + 4} \right) < 0\\m > 0\\m + 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ne  - 2\\ - 4 < m < 0\\m >  - 2\\m > 0\end{array} \right. \Rightarrow m \in \emptyset .\end{array}\) 

Vậy \(m \in \emptyset .\)

Chọn B.

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com