Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hàm số \(y = \dfrac{1}{3}{x^3} + {x^2} - 3x + 1\) đạt cực tiểu tại điểm

Câu hỏi số 315646:
Thông hiểu

Hàm số \(y = \dfrac{1}{3}{x^3} + {x^2} - 3x + 1\) đạt cực tiểu tại điểm

Đáp án đúng là: B

Quảng cáo

Câu hỏi:315646
Phương pháp giải

Hàm số \(y=f\left( x \right)\) đạt cực tiểu tại \(x={{x}_{0}}\Leftrightarrow \left\{ \begin{align}  & f'\left( {{x}_{0}} \right)=0 \\ & f'\left( {{x}_{0}} \right)>0 \\\end{align} \right.\).

Giải chi tiết

TXĐ: \(D = \mathbb{R}\).

Ta có \(y'={{x}^{2}}+2x-3,\,\,y''=2x+2\).

Hàm số đạt cực tiểu tại 

\(x = {x_0} \Leftrightarrow \left\{ \begin{array}{l}
y'\left( {{x_0}} \right) = 0\\
y''\left( {{x_0}} \right) > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x_0^2 + 2{x_0} - 3 = 0\\
2{x_0} + 2 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
{x_0} = 1\\
{x_0} = - 3
\end{array} \right.\\
{x_0} > - 1
\end{array} \right. \Leftrightarrow {x_0} = 1\)

Chú ý khi giải

HS có thể sử dụng BBT để xác định các điểm cực trị của hàm số.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com