Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho mặt cầu \(\left( S \right)\) tâm \(O\), bán kính bằng 2. \(\left( P \right)\) là mặt phẳng cách

Câu hỏi số 315673:
Vận dụng

Cho mặt cầu \(\left( S \right)\) tâm \(O\), bán kính bằng 2. \(\left( P \right)\) là mặt phẳng cách \(O\) một khoảng bằng 1 và cắt \(\left( S \right)\) theo một đường tròn \(\left( C \right)\). Hình nón \(\left( N \right)\) có đáy là \(\left( C \right)\), đỉnh thuộc \(\left( S \right)\), đỉnh cách \(\left( P \right)\) một khoảng lớn hơn \(2\). Kí hiệu \({V_1}\), \({V_2}\) lần lượt là thể tích của khối cầu \(\left( S \right)\) và khối nón \(\left( N \right)\). Tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\) là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:315673
Phương pháp giải

- Tính các thể tích \({V_1},{V_2}\), từ đó suy ra tỉ số.

Sử dụng các công thức tính thể tích khối cầu \(V = \dfrac{4}{3}\pi {R^3}\) và khối nón \(V = \dfrac{1}{3}\pi {r^2}h\).

Giải chi tiết

Thế tích khối cầu: \({V_1} = \dfrac{4}{3}\pi {R^3} = \dfrac{4}{3}\pi {.2^3} = \dfrac{{32\pi }}{3}\).

Do khối nón có đỉnh thuộc \(\left( S \right)\) và cách \(\left( P \right)\) một khoảng lớn hơn \(2\) nên có chiều cao \(SH = SO + OH = 2 + 1 = 3\).

Thể tích khối nón: \({V_2} = \dfrac{1}{3}\pi .H{B^2}.SH = \dfrac{1}{3}\pi .\left( {O{B^2} - O{H^2}} \right).3 = \pi .\left( {{2^2} - {1^2}} \right) = 3\pi \).

Vậy \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{32\pi }}{3}:3\pi  = \dfrac{{32}}{9}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com