Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm m để phương trình \({\log _2}^2x - {\log _2}{x^2} + 3 = m\) có nghiệm \(x \in {\rm{[}}1;8]\)

Câu hỏi số 316478:
Vận dụng

Tìm m để phương trình \({\log _2}^2x - {\log _2}{x^2} + 3 = m\) có nghiệm \(x \in {\rm{[}}1;8]\) .

Đáp án đúng là: C

Quảng cáo

Câu hỏi:316478
Phương pháp giải

Sử dụng phương pháp đặt ẩn phụ \(t = {\log _2}x\).

Giải chi tiết

     \({\log _2}^2x - {\log _2}{x^2} + 3 = m\). (ĐK: \(x > 0\))

\( \Leftrightarrow \log _2^2x - 2{\log _2}x + 3 = m\,\,\left( {Do\,\,x > 0} \right)\).

Đặt \(t = {\log _2}x\). Khi \(x \in \left[ {1;8} \right] \Rightarrow t \in \left[ {0;3} \right]\).

Bài toán trở thành: Tìm \(m\) để phương trình \({t^2} - 2t + 3 = m\) có nghiệm \(t \in \left[ {0;3} \right]\). 

Số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(f\left( t \right) = {t^2} - 2t + 3\) và đường thẳng \(y = m\) song song với trục hoành.

Xét hàm số \(f\left( t \right) = {t^2} - 2t + 3\) ta có \(f'\left( t \right) = 2t - 2 = 0 \Leftrightarrow t = 1\).

BBT:

Dựa vào BBT ta thấy phương trình có nghiệm \(t \in \left[ {0;3} \right] \Leftrightarrow m \in \left[ {2;6} \right]\).

Chú ý khi giải

Nhiều HS sau khi lập BBT sẽ kết luận nhầm \(m \in \left[ {3;6} \right]\) và chọn đáp án D.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com