Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng \((P):x + 2y - 2z + 1 = 0,\) \((Q):x + my + (m -

Câu hỏi số 316477:
Vận dụng

Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng \((P):x + 2y - 2z + 1 = 0,\) \((Q):x + my + (m - 1)z + 2019 = 0\). Khi hai mặt phẳng (P), (Q) tạo với nhau một góc nhỏ nhất thì mặt phẳng (Q) đi qua điểm M nào sau đây?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:316477
Phương pháp giải

Với \(\alpha  \le {90^0}\) thì \(\cos \alpha \) là hàm nghịch biến.

Sử dụng công thức tính góc giữa 2 mặt phẳng \(\left( P \right),\,\,\left( Q \right)\) là: \(\cos \angle \left( {\left( P \right);\left( Q \right)} \right) = \dfrac{{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} } \right|}}{{\left| {\overrightarrow {{n_P}} } \right|\left| {\overrightarrow {{n_Q}} } \right|}}\).

Giải chi tiết

Gọi \(\overrightarrow {{n_p}} ,\,\,\overrightarrow {{n_Q}} \) lần lượt là các VTPT của \(\left( P \right)\) và \(\left( Q \right)\) ta có \(\overrightarrow {{n_P}}  = \left( {1;2; - 2} \right);\,\,\overrightarrow {{n_Q}}  = \left( {1;m;m - 1} \right)\).

Khi đó ta có \(\cos \angle \left( {\left( P \right);\left( Q \right)} \right) = \dfrac{{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} } \right|}}{{\left| {\overrightarrow {{n_P}} } \right|\left| {\overrightarrow {{n_Q}} } \right|}} = \dfrac{{\left| {1 + 2m - 2m + 2} \right|}}{{3\sqrt {1 + {m^2} + {{\left( {m - 1} \right)}^2}} }} = \dfrac{1}{{\sqrt {2{m^2} - 2m + 2} }}\)

Ta có \(2{m^2} - 2m + 2 = 2\left( {{m^2} - m} \right) + 2 = 2\left( {{m^2} - 2.m.\dfrac{1}{2} + \dfrac{1}{4} - \dfrac{1}{4}} \right) + 2 = 2{\left( {m - \dfrac{1}{2}} \right)^2} + \dfrac{3}{2} \ge \dfrac{3}{2}\)

\( \Rightarrow \cos \angle \left( {\left( P \right);\left( Q \right)} \right) \le \dfrac{1}{{\dfrac{3}{2}}} = \dfrac{2}{3}\).  Dấu " =" xảy ra \( \Leftrightarrow m = \dfrac{1}{2}\).

\( \Rightarrow \angle \left( {\left( P \right);\left( Q \right)} \right)\) nhỏ nhất \( \Leftrightarrow m = \dfrac{1}{2} \Rightarrow \left( Q \right):\,\,x + \dfrac{1}{2}y - \dfrac{1}{2}z + 2019 = 0\).

Khi đó \(\left( Q \right)\) đi qua điểm \(M( - 2019;\;1;\;1)\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com