Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Có bao nhiêu số tự nhiên m để phương trình sau có nghiệm ? \({e^m} + {e^{3m}} = 2\left( {x + \sqrt {1 -

Câu hỏi số 316486:
Vận dụng cao

Có bao nhiêu số tự nhiên m để phương trình sau có nghiệm ?

\({e^m} + {e^{3m}} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\) .

Đáp án đúng là: D

Quảng cáo

Câu hỏi:316486
Phương pháp giải

+) Đặt \(x + \sqrt {1 - {x^2}}  = t\), tìm khoảng giá trị của \(t\).

+) Đưa bài toán về dạng \(m = f\left( t \right)\). Tìm điều kiện để phương trình có nghiệm.

Giải chi tiết

ĐKXĐ: \(1 - {x^2} \ge 0 \Leftrightarrow  - 1 \le x \le 1\).

Đặt \(x + \sqrt {1 - {x^2}}  = t\) ta có \({t^2} = {x^2} + 1 - {x^2} + 2x\sqrt {1 - {x^2}}  = 1 + 2x\sqrt {1 - {x^2}}  \Rightarrow x\sqrt {1 - {x^2}}  = \dfrac{{{t^2} - 1}}{2}\).

Ta có: \(t\left( x \right) = x + \sqrt {1 - {x^2}} ,\,\,x \in \left[ { - 1;1} \right] \Rightarrow t'\left( x \right) = 1 - \dfrac{x}{{\sqrt {1 - {x^2}} }} = \dfrac{{\sqrt {1 - {x^2}}  - x}}{{\sqrt {1 - {x^2}} }} = 0\)

\( \Leftrightarrow \sqrt {1 - {x^2}}  = x \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\1 - {x^2} = {x^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} = \dfrac{1}{2}\end{array} \right. \Leftrightarrow x = \dfrac{{\sqrt 2 }}{2}\).

BBT:

Từ BBT ta có: \(t \in \left[ { - 1;\sqrt 2 } \right]\).

Khi đó phương trình trở thành : \({e^m} + {e^{3m}} = 2t\left( {1 + \dfrac{{{t^2} - 1}}{2}} \right) = t\left( {{t^2} + 1} \right) = {t^3} + t\,\,\left( * \right)\).

Xét hàm số \(f\left( t \right) = {t^3} + t\) ta có \(f'\left( t \right) = 3{t^2} + 1 > 0\,\,\forall t \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R} \Rightarrow \) Hàm số đồng biến trên \(\left( { - 1;\sqrt 2 } \right)\).

Từ (*) \( \Rightarrow f\left( {{e^m}} \right) = f\left( t \right) \Leftrightarrow {e^m} = t \Leftrightarrow m = \ln t \Rightarrow m \in \left( {-\infty ;\ln\sqrt 2 } \right) \)

Lại có \(m \in \mathbb {N} \Rightarrow m =0 \)

 

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com