Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có các cạnh \(SA = BC = 3\); \(SB = AC = 4\); \(SC = AB = 2\sqrt 5 \). Tính thể tích

Câu hỏi số 317419:
Vận dụng

Cho hình chóp \(S.ABC\) có các cạnh \(SA = BC = 3\); \(SB = AC = 4\); \(SC = AB = 2\sqrt 5 \). Tính thể tích khối chóp \(S.ABC\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:317419
Phương pháp giải

+) Dựng hình chóp \(S.A'B'C'\) sao cho \(A,\,\,B,\,\,C\) lần lượt là trung điểm của \(B'C',\,\,C'A',\,\,A'B'\). Chứng minh chóp \(S.A'B'C'\) có \(SA',\,\,SB',\,\,SC'\) đôi một vuông góc.

+) Tính thể tích \(S.A'B'C'\), từ đó suy ra thể tích \({V_{S.ABC}}\).

Giải chi tiết

Đặt \(SA = BC = a,\,\,SB = AC = b,\,\,SC = AB = c\).

Dựng hình chóp \(S.A'B'C'\) sao cho \(A,\,\,B,\,\,C\) lần lượt là trung điểm của \(B'C',\,\,C'A',\,\,A'B'\).

Dễ thấy \(\Delta ABC\) đồng dạng với \(\Delta A'B'C'\) theo tỉ số \(\frac{1}{2} \Rightarrow \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta A'B'C'}}}} = \frac{1}{4} \Rightarrow {V_{S.ABC}} = \frac{1}{4}{V_{S.A'B'C'}}\).

Ta có \(AB,\,\,BC,\,\,CA\) là các đường trung bình của tam giác \(A'B'C'\)

\( \Rightarrow A'B' = 2AB = 2c;\,\,B'C' = 2BC = 2a,\,\,A'C' = 2AC = 2b\).

\( \Rightarrow \Delta SA'B',\,\,\Delta SB'C',\,\,\Delta SC'A'\) là các tam giác vuông tại \(S\) (Tam giác có trung tuyến ứng với một cạnh bằng nửa cạnh ấy)

\( \Rightarrow SA',\,\,SB',\,\,SC'\) đôi một vuông góc

 \({V_{S.A'B'C'}} = \frac{1}{6}SA'.SB'.SC' \Rightarrow {V_{S.ABC}} = \frac{1}{{24}}SA'.SB'.SC'\).

Áp dụng định lí Pytago ta có: 

\(\left\{ \begin{array}{l}SA{'^2} + SB{'^2} = 4{c^2}\\SB{'^2} + SC{'^2} = 4{a^2}\\SA{'^2} + SC{'^2} = 4{b^2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}SA{'^2} = 2\left( {{b^2} + {c^2} - {a^2}} \right)\\SB{'^2} = 2\left( {{a^2} + {c^2} - {b^2}} \right)\\SC{'^2} = 2\left( {{a^2} + {b^2} - {c^2}} \right)\end{array} \right.\).

\(\begin{array}{l} \Rightarrow {V_{S.ABC}} = \frac{1}{{24}}.\sqrt {8\left( {{b^2} + {c^2} - {a^2}} \right)\left( {{a^2} + {c^2} - {b^2}} \right)\left( {{a^2} + {b^2} - {c^2}} \right)} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{{6\sqrt 2 }}\sqrt {\left( {{b^2} + {c^2} - {a^2}} \right)\left( {{a^2} + {c^2} - {b^2}} \right)\left( {{a^2} + {b^2} - {c^2}} \right)} \end{array}\) 

Thay \(a = 3,\,\,b = 4,\,\,c = 2\sqrt 5  \Rightarrow {V_{S.ABC}} = \frac{{\sqrt {390} }}{4}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com