Cho hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\). Biết \(f'\left( 0 \right) =
Cho hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai trên \(\mathbb{R}\). Biết \(f'\left( 0 \right) = 3\), \(f'\left( 2 \right) = - 2018\) và bảng xét dấu của \(f''\left( x \right)\) như sau:
Hàm số \(y = f\left( {x + 2017} \right) + 2018x\) đạt giá trị nhỏ nhất tại điểm \({x_0}\) thuộc khoảng nào sau đây?
Đáp án đúng là: B
Quảng cáo
+) Từ BXD của \(f''\left( x \right)\) ta suy ra BBT của \(f'\left( x \right)\) và suy ra BBT của hàm số \(f'\left( {x + 2017} \right) + 2018\).
+) Giải phương trình \(f'\left( {x + 2017} \right) + 2018 = 0\), lập BBT của hàm số \(y = f\left( {x + 2017} \right) + 2018x\) và xác định GTNN.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












