Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số  có đồ thị như hình dưới đây. Hàm số \(g\left( x \right) = \ln \left( {f\left( x

Câu hỏi số 318503:
Thông hiểu

Cho hàm số  có đồ thị như hình dưới đây. Hàm số \(g\left( x \right) = \ln \left( {f\left( x \right)} \right)\) đồng biến trên khoảng nào dưới đây?

 

Đáp án đúng là: B

Quảng cáo

Câu hỏi:318503
Phương pháp giải

Xác định khoảng mà \(g'\left( x \right) \le 0\) và bằng 0 tại hữu hạn điểm trên đó.

Đạo hàm hàm hợp: \({\left( {f\left( {u\left( x \right)} \right)} \right)^\prime } = f'\left( {u\left( x \right)} \right).u'\left( x \right)\)

Giải chi tiết

Ta có: \(g\left( x \right) = \ln \left( {f\left( x \right)} \right) \Rightarrow g'\left( x \right) = \dfrac{{f'\left( x \right)}}{{f\left( x \right)}}\)

Quan sát đồ thị hàm số, ta thấy:

+) \(f\left( x \right) > 0,\,\,\forall x\)

+) \(f'\left( x \right) > 0\) trên các khoảng \(\left( { - 1;0} \right),\,\,\left( {1; + \infty } \right)\)

\( \Rightarrow g\left( x \right)\) đồng biến trên các khoảng \(\left( { - 1;0} \right),\,\,\left( {1; + \infty } \right)\) .

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com