Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình hộp \(ABCD.A'B'C'D'\) có \(A'B\) vuông góc với mặt phẳng đáy \(\left( {ABCD} \right)\); góc

Câu hỏi số 318524:
Vận dụng cao

Cho hình hộp \(ABCD.A'B'C'D'\) có \(A'B\) vuông góc với mặt phẳng đáy \(\left( {ABCD} \right)\); góc của \(AA'\) với \(\left( {ABCD} \right)\)bằng \({45^0}\). Khoảng cách từ \(A\) đến các đường thẳng \(BB'\) và \(DD'\) bằng \(1\). Góc của  mặt \(\left( {BCC'B'} \right)\) và mặt phẳng \(\left( {CC'D'D} \right)\) bẳng \({60^0}\). Thể tích khối hộp đã cho là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:318524
Giải chi tiết

 

 

Gọi H, K lần lượt là hình chiếu của A lên đường thẳng BB’ và DD’. Theo đề bài, ta có: \(AH = AK = 1\)

Ta có: 

\(\begin{array}{l}\widehat {\left( {\left( {BB'C'C} \right);\left( {CC'D'D} \right)} \right)} = \widehat {\left( {\left( {ABB'A'} \right);\left( {ADD'A'} \right)} \right)} = {60^0}\\ \Rightarrow \widehat {HAK} = {60^0}\end{array}\)

(do \(\left( {AHK} \right) \bot AA',\,\,AA' = \left( {ABB'A'} \right) \cap \left( {ADD'A'} \right)\))

Ta có: \(AH \bot BB',\,\,BB'//AA' \Rightarrow AH \bot AA'\).

Mà \(\widehat {BAA'} = {45^0} \Rightarrow \widehat {HAB} = {45^0} \Rightarrow AB = AH.\sqrt 2  = \sqrt 2 \)

 \( \Rightarrow A'B = AB = \sqrt 2 \)

Kẻ \(KI \bot AH\) tại I. Ta có: \(AA' \bot \left( {AKH} \right) \Rightarrow \left( {AA'B'H} \right) \bot \left( {AKH} \right)\).

Mà \(\left\{ \begin{array}{l}\left( {AA'B'H} \right) \cap \left( {AKH} \right) = AH\\IK \subset \left( {AKH} \right)\\IK \bot AH\end{array} \right. \Rightarrow IK \bot \left( {AA'B'H} \right) \Rightarrow d\left( {K;\left( {AA'B'H} \right)} \right) = IK\)

\( \Rightarrow d\left( {D;\left( {AA'B'H} \right)} \right) = d\left( {K;\left( {AA'B'H} \right)} \right) = IK\) (do \(DK//\left( {AA'B'H} \right)\))

\(\Delta AHK\) có \(\widehat {HAK} = {60^0}\), \(AH = AK = 1 \Rightarrow IK = \dfrac{{1.\sqrt 3 }}{2} = \dfrac{{\sqrt 3 }}{2}\)

\({V_{D.AA'B}} = \dfrac{1}{3}.IK.{S_{AA'B}} = \dfrac{1}{3}.\dfrac{{\sqrt 3 }}{2}.\dfrac{1}{2}.\sqrt 2 .\sqrt 2  = \dfrac{{\sqrt 3 }}{6}\) \( \Rightarrow V = 6.\dfrac{{\sqrt 3 }}{6} = \sqrt 3 \).

Chọn: C  

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com