Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Gọi H, K lần

Câu hỏi số 318968:
Vận dụng

Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Gọi H, K lần lượt là hình chiếu vuông góc của A lên các đường thẳng  SB và SD. Biết \(\angle HAK = 40^0.\) Góc giữa hai mặt phẳng (SBC) và (SCD) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:318968
Phương pháp giải

+) Xác định thiết diện của hình chóp cắt bởi \(\left( {AHK} \right)\).

+) Xác định góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {SCD} \right)\).

+) Chứng minh \(SC \bot \left( {AHK} \right)\).

+) Xác định 2 góc còn lại của thiết diện của hình chóp cắt bởi \(\left( {AHK} \right)\).

Giải chi tiết

Gọi \(O = AC \cap BD\), trong \(\left( {SBD} \right)\) gọi \(I = HK \cap SO\), trong \(\left( {SAC} \right)\) gọi \(M = AI \cap SC\).

Khi đó ta có \(\left( {AHK} \right) \equiv \left( {AHMK} \right)\).

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH\\\left\{ \begin{array}{l}AH \bot BC\\AH \bot SB\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\end{array}\).

Hoàn toàn tương tự ta chứng minh được \(AK \bot SC \Rightarrow SC \bot \left( {AHMK} \right) \Rightarrow \left\{ \begin{array}{l}SC \bot HM\\SC \bot KM\end{array} \right.\)

\(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {SCD} \right) = SC\\\left( {SBC} \right) \supset HM \bot SC\\\left( {SCD} \right) \supset KM \bot SC\end{array} \right. \Rightarrow \angle \left( {\left( {SBC} \right);\left( {SCD} \right)} \right) = \angle \left( {HM;KM} \right) = \angle HMK\)

Ta có: \(AH \bot \left( {SBC} \right) \Rightarrow AH \bot HM \Rightarrow \angle AHM = {90^0}\). Tương tự ta có \(\angle AKM = {90^0}\).

Xét tứ giác \(AHMK\) có :

\(\angle HAK + \angle AHM + \angle AKM + \angle HMK = {360^0} \Leftrightarrow \angle HMK = {360^0} - {40^0} - {90^0} - {90^0} = {140^0} > {90^0}\).

Vậy \(\angle \left( {HM;KM} \right) = {180^0} - {140^0} = {40^0} \Rightarrow \angle \left( {\left( {SBC} \right);\left( {SCD} \right)} \right) = {40^0}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com