Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - a}}{{x - 2}}\,\,khi\,\,x \ne 2\\2b +

Câu hỏi số 321310:
Vận dụng

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - a}}{{x - 2}}\,\,khi\,\,x \ne 2\\2b + 1\,\,\,\,khi\,\,x = 2\end{array} \right.\). Biết \(a,\,\,b\) là các giá trị thực để hàm số liên tục tại \(x = 2\). Khi đó \(a + 2b\) nhận giá trị bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:321310
Phương pháp giải

Hàm số \(y = f\left( x \right)\) liên tục tại điểm \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Giải chi tiết

Ta có \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - a}}{{x - 2}},\,\,f\left( 2 \right) = 2b + 1\)

TH1: \(a = 4 \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 4}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 2} \right) = 4\)

Để hàm số liên tục tại \(x = 2 \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right) \Leftrightarrow 4 = 2b + 1 \Leftrightarrow b = \dfrac{3}{2}\)

\( \Rightarrow a + 2b = 4 + 2.\dfrac{3}{2} = 7\).

TH2: \(a \ne 4 \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - a}}{{x - 2}} = \infty  \ne f\left( 2 \right)\,\,\forall a,b\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com