Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các

Câu hỏi số 321577:
Vận dụng

Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương \(x,y,z\) thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1.\) Giá trị của \(a + b\) bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:321577
Phương pháp giải

- Tính \(xy\) từ các giả thiết liên quan đến \(x + y,{x^2} + {y^2}\).

- Biểu diễn \({x^3} + {y^3}\) theo \(x + y,xy\) và thay \(z = {10^{x + y}}\) vào tính \({x^3} + {y^3}\).

Giải chi tiết

Ta có: \(\log \left( {x + y} \right) = z \Leftrightarrow x + y = {10^z}\) ;

\(\log \left( {{x^2} + {y^2}} \right) = z + 1 \Leftrightarrow {x^2} + {y^2} = {10^{z + 1}} = {10^z}.10 = 10\left( {x + y} \right)\)

\( \Rightarrow {\left( {x + y} \right)^2} - 2xy = 10\left( {x + y} \right) \Rightarrow xy = \dfrac{{{{\left( {x + y} \right)}^2} - 10\left( {x + y} \right)}}{2}\)

Do đó \({x^3} + {y^3} = {\left( {x + y} \right)^3} - 3xy\left( {x + y} \right)\) \( = {\left( {x + y} \right)^3} - 3.\dfrac{{{{\left( {x + y} \right)}^2} - 10\left( {x + y} \right)}}{2}.\left( {x + y} \right)\)                      

                       \( =  - \dfrac{1}{2}{\left( {x + y} \right)^3} + 15{\left( {x + y} \right)^2} =  - \dfrac{1}{2}{.10^{3z}} + {15.10^{2z}}\).

Suy ra \(a =  - \dfrac{1}{2},b = 15 \Rightarrow a + b = \dfrac{{29}}{2}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com