Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Giá trị nhỏ nhất của hàm số \(y = {x^3} - 7{x^2} + 11x - 2\) trên đoạn \({\rm{[}}0;2]\)

Câu hỏi số 321602:
Nhận biết

Giá trị nhỏ nhất của hàm số \(y = {x^3} - 7{x^2} + 11x - 2\) trên đoạn \({\rm{[}}0;2]\) bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:321602
Phương pháp giải

- Tính \(y'\), tìm các nghiệm của \(y' = 0\) nằm trong đoạn \(\left[ {0;2} \right]\).

- Tính giá trị của hàm số tại các điểm trên (cả hai đầu mút) và so sánh.

Giải chi tiết

Ta có: \(y' = 3{x^2} - 14x + 11 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \left[ {0;2} \right]\\x = \dfrac{{11}}{3} \notin \left[ {0;2} \right]\end{array} \right.\).

Lại có \(y\left( 0 \right) =  - 2,y\left( 2 \right) = 0,y\left( 1 \right) = 3\) nên GTNN của hàm số là \( - 2\) đạt được tại \(x = 0\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com