Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 3a,AD = 4a,AA' = 4a\). Gọi \(G\) là trọng tâm tam giác

Câu hỏi số 321724:
Vận dụng

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 3a,AD = 4a,AA' = 4a\). Gọi \(G\) là trọng tâm tam giác \(CC'D\). Mặt phẳng chứa \(B'G\) và song song với \(C'D\) chia khối hộp thành \(2\) phần. Gọi \(\left( H \right)\) là khối đa diện chứa \(C\). Tính tỉ số \(\frac{{{V_{\left( H \right)}}}}{V}\) với \(V\) là thể tích khối hộp đã cho.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:321724
Phương pháp giải

- Dựng mặt phẳng chứa \(B'G\) và song song \(C'D\).

- Xác định khối đa diện và tính thể tích bằng cách cộng trừ thể tích các khối đa diện đơn giản.

Giải chi tiết

Gọi \(\left( \alpha  \right)\) là mặt phẳng chứa \(B'G\) và song song với \(C'D.\)

Gọi \(M,\,N\) lần lượt là giao điểm của \(\left( \alpha  \right)\) với \(CD\) và \(CC'.\)

Khi đó ta có: \(MN//C'D\) và \(\frac{{CM}}{{CD}} = \frac{{CN}}{{CC'}} = \frac{2}{3}\)

Và \(\left( \alpha  \right)\) là mặt phẳng \(\left( {AMNB'} \right),\,\,\left( H \right)\) là phần khối đa diện chứa \(C.\)

Khi đó ta có: \({V_{\left( H \right)}} = {V_{M.BCNB'}} + {V_{B'.ABM}}\)

Ta có: \(BCNB'\) là hình thang vuông tại \(B,\,\,C\) có diện tích:

\(\begin{array}{l}{S_{BCNB'}} = \frac{1}{2}\left( {BB' + CN} \right).BC = \frac{1}{2}\left( {4a + \frac{2}{3}.4a} \right).4a = \frac{{40{a^2}}}{3}.\\ \Rightarrow {V_{MBCNB'}} = \frac{1}{3}MC.{S_{BCNB'}} = \frac{1}{3}.\frac{2}{3}.3a.\frac{{40}}{3}{a^2} = \frac{{80{a^3}}}{9}.\end{array}\)

Mặt khác \({S_{\Delta ABM}} = {S_{ABCD}} - {S_{\Delta BCM}} - {S_{\Delta ADM}} = 3a.4a - \frac{1}{2}.4a.\frac{2}{3}.3a - \frac{1}{2}.4a.\frac{1}{3}.3a = 6{a^2}.\)

\(\begin{array}{l} \Rightarrow {V_{B'ABM}} = \frac{1}{3}BB'.{S_{ABM}} = \frac{1}{3}.4a.6{a^2} = 8{a^3}.\\ \Rightarrow {V_{\left( H \right)}} = \frac{{80}}{9}{a^3} + 8{a^3} = \frac{{152{a^3}}}{9}.\end{array}\) 

Thể tích hình hộp chữ nhật là: \(V = 3a.4a.4a = 48{a^3}.\)

\( \Rightarrow \frac{{{V_{\left( H \right)}}}}{V} = \frac{{152{a^3}}}{9}.\frac{1}{{48{a^3}}} = \frac{{19}}{{54}}.\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com