Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi \(A,B\) là hai điểm thuộc hai nhánh khác nhau trên đồ thị \(\left( C \right)\) của hàm số \(y

Câu hỏi số 321731:
Vận dụng

Gọi \(A,B\) là hai điểm thuộc hai nhánh khác nhau trên đồ thị \(\left( C \right)\) của hàm số \(y = \frac{{x + 3}}{{x - 3}}\) , độ dài ngắn nhất của đoạn thẳng \(AB\) là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:321731
Phương pháp giải

Sử dụng nhận xét: Hàm số \(y = \frac{{ax + b}}{{cx + d}}\,\left( C \right)\)  nhận \(I\left( {\frac{{ - d}}{c};\frac{a}{c}} \right)\)  làm tâm đối xứng và với \(A,B\) thuộc hai nhánh đồ thị \(\left( C \right)\) thì để \(AB\) nhỏ nhất khi \(I\) là trung điểm của \(AB.\)

Từ đó sử dụng công thức tọa độ trung điểm và bất đẳng thức Cô-si để tính toán.

Giải chi tiết

ĐK : \(x \ne 3\)

Ta có \(y = \frac{{x + 3}}{{x - 3}} = 1 + \frac{6}{{x - 3}}\) . Đồ thị hàm số \(\left( C \right)\) có tiệm cận đứng \(x = 3\) và tiệm cận ngang \(y = 1.\) Suy ra tâm đối xứng của đồ thị \(\left( C \right)\) là \(I\left( {3;1} \right)\).

Với \(A,B \in \left( C \right)\) và \(A,B\) thuộc hai nhánh khác nhau của đồ thị . Để \(AB\) nhỏ nhất  thì \(A;I;B\) thẳng hàng hay \(I\) là trung điểm của \(AB.\)

Gọi \(A\left( {{x_A};1 + \frac{6}{{{x_A} - 3}}} \right);B\left( {{x_B};1 + \frac{6}{{{x_B} - 3}}} \right)\)  thuộc đồ thị \(\left( C \right)\).

Vì \(I\left( {3;1} \right)\) là trung điểm của \(AB\) nên \({x_A} + {x_B} = 2{x_I} \Leftrightarrow {x_A} + {x_B} = 6 \Leftrightarrow {x_B} = 6 - {x_A}\)

Suy ra \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {\frac{6}{{{x_B} - 3}} - \frac{6}{{{x_A} - 3}}} \right)}^2}} \)

\( = \sqrt {{{\left( {6 - 2{x_A}} \right)}^2} + {{\left( {\frac{6}{{3 - {x_A}}} - \frac{6}{{{x_A} - 3}}} \right)}^2}}  = \sqrt {4{{\left( {{x_A} - 3} \right)}^2} + \frac{{144}}{{{{\left( {{x_A} - 3} \right)}^2}}}} \)

Ta có \(A{B^2} = 4{\left( {{x_A} - 3} \right)^2} + \frac{{144}}{{{{\left( {{x_A} - 3} \right)}^2}}}\mathop  \ge \limits^{Cosi} 2\sqrt {4{{\left( {{x_A} - 3} \right)}^2}.\frac{{144}}{{{{\left( {{x_A} - 3} \right)}^2}}}}  = 48\)

Suy ra \(A{B_{\min }} = \sqrt {48}  = 4\sqrt 3  \Leftrightarrow 4{\left( {{x_A} - 3} \right)^2} = \frac{{144}}{{{{\left( {{x_A} - 3} \right)}^2}}} \Leftrightarrow {\left( {{x_A} - 3} \right)^4} = 36 \Rightarrow \left[ \begin{array}{l}{x_A} = 3 + \sqrt 6 \\{x_A} = 3 - \sqrt 6 \end{array} \right.\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com