Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số nghiệm của phương trình \({\log _2}x.{\log _3}\left( {2x - 1} \right) = 2{\log _2}x\) là:

Câu hỏi số 321736:
Thông hiểu

Số nghiệm của phương trình \({\log _2}x.{\log _3}\left( {2x - 1} \right) = 2{\log _2}x\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:321736
Phương pháp giải

Chuyển vế đặt nhân tử chung, giải phương trình tích và sử dụng công thức \({\log _a}f\left( x \right) = m \Leftrightarrow f\left( x \right) = {a^m}\).

Giải chi tiết

Điều kiện: \(\left\{ \begin{array}{l}x > 0\\2x - 1 > 0\end{array} \right. \Leftrightarrow x > \frac{1}{2}\).

Khi đó phương trình \( \Leftrightarrow {\log _2}x.{\log _3}\left( {2x - 1} \right) - 2{\log _2}x = 0\) \( \Leftrightarrow {\log _2}x\left[ {{{\log }_3}\left( {2x - 1} \right) - 2} \right] = 0\) \( \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = 0\\{\log _3}\left( {2x - 1} \right) - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\2x - 1 = 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 5\end{array} \right.\left( {TM} \right)\)

Vậy phương trình đã cho có \(2\) nghiệm.

Chú ý khi giải

Một số em có thể sẽ chia cả hai vế cho \({\log _2}x\) mà quên không xét trường hợp \({\log _2}x = 0\) vẫn có nghiệm \(x = 1\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com