Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({2^{\left| {\frac{{28}}{3}x + 1} \right|}} = {16^{{x^2} - 1}}\) . Khẳng định nào sau đây

Câu hỏi số 321737:
Vận dụng

Cho phương trình \({2^{\left| {\frac{{28}}{3}x + 1} \right|}} = {16^{{x^2} - 1}}\) . Khẳng định nào sau đây là đúng?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:321737
Phương pháp giải

+ Giải phương trình mũ bằng cách đưa về cùng cơ số rồi cho hai số mũ bằng nhau

+ Giải phương trình chứa dấu giá trị tuyệt đối \(\left| A \right| = B\left( {B \ge 0} \right) \Leftrightarrow \left[ \begin{array}{l}A = B\\A =  - B\end{array} \right.\)

Giải chi tiết

Ta có : \({2^{\left| {\dfrac{{28}}{3}x + 1} \right|}} = {16^{{x^2} - 1}} \Leftrightarrow {2^{\left| {\dfrac{{28}}{3}x + 1} \right|}} = {2^{4\left( {{x^2} - 1} \right)}}\) \( \Leftrightarrow \left| {\dfrac{{28}}{3}x + 1} \right| = 4\left( {{x^2} - 1} \right)\,\,\,\left( {DK:\,\,\left[ \begin{array}{l}x \ge 1\\x \le  - 1\end{array} \right.} \right)\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\dfrac{{28}}{3}x + 1 = 4\left( {{x^2} - 1} \right){\mkern 1mu} }\\{\dfrac{{28}}{3}x + 1 = 4\left( {1 - {x^2}} \right){\mkern 1mu} }\end{array}} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}12{x^2} - 28x - 15 = 0\\12{x^2} + 28x - 9 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{7 + \sqrt {94} }}{6}\,\,\,\,\,\left( {tm} \right)\\x = \frac{{7 - \sqrt {94} }}{6}\,\,\,\,\,\left( {ktm} \right)\\x = \frac{{ - 7 + 2\sqrt {19} }}{6}\,\,\,\,\left( {ktm} \right)\\x = \frac{{ - 7 - 2\sqrt {19} }}{6}\,\,\,\,\left( {tm} \right)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{7 + \sqrt {94} }}{6}\\x = \frac{{ - 7 - 2\sqrt {19} }}{6}\end{array} \right.\)

Chọn B

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com