Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(A\left( {0;1;2} \right),\,\,B\left( {2; - 2;1} \right),\,\,C\left( { - 2;0;1} \right),\,\,\left( P \right):\,\,2x

Câu hỏi số 323581:
Vận dụng

Cho \(A\left( {0;1;2} \right),\,\,B\left( {2; - 2;1} \right),\,\,C\left( { - 2;0;1} \right),\,\,\left( P \right):\,\,2x + 2y + z - 3 = 0\). \(\left( S \right)\) có tâm \(I \in \left( P \right)\) và đi qua \(A,B,C\) có phương trình là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:323581
Giải chi tiết

* Giả sử \(I\left( {a;b;c} \right)\).

\(\begin{array}{l}\left\{ \begin{array}{l}I \in \left( P \right) \Rightarrow 2a + 2b + c - 3 = 0\\IA = IB \Leftrightarrow {a^2} + {\left( {b - 1} \right)^2} + {\left( {c - 2} \right)^2} = {\left( {a - 2} \right)^2} + {\left( {b + 2} \right)^2} + {\left( {c - 1} \right)^2}\\IB = IC \Leftrightarrow {\left( {a - 2} \right)^2} + {\left( {b + 2} \right)^2} + {\left( {c - 1} \right)^2} = {\left( {a + 2} \right)^2} + {b^2} + {\left( {c - 1} \right)^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2a + 2b + c - 3 = 0\\4a - 6b - 2c = 4\\ - 8a + 4b =  - 4\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 2\\b = 3\\c =  - 7\end{array} \right. \Rightarrow I\left( {2;3; - 7} \right)\end{array}\)

* \(R = IA = \sqrt {4 + 4 + 81}  = \sqrt {89} \).

* Phương trình \(\left( S \right):\,\,{\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 7} \right)^2} = 89\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com