Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(\left( P \right):\,\,x - 2y + 2z - 1 = 0,\,\,\left( S \right):\,\,{x^2} + {y^2} + {z^2} + 2y - 2z - 23 = 0\).

Câu hỏi số 323591:
Vận dụng

Cho \(\left( P \right):\,\,x - 2y + 2z - 1 = 0,\,\,\left( S \right):\,\,{x^2} + {y^2} + {z^2} + 2y - 2z - 23 = 0\). \(\left( P \right) \cap \left( S \right) = \left( C \right)\). Tính \({R_C}\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:323591
Giải chi tiết

* \(I\left( {0; - 1;1} \right) \Rightarrow IJ = d\left( {I;\left( P \right)} \right) = \dfrac{{\left| {0 + 2 + 2 - 1} \right|}}{{\sqrt {1 + 4 + 4} }} = 1\).

* \({R_S} = \sqrt {{a^2} + {b^2} + {c^2} - d}  = \sqrt {1 + 1 + 23}  = 5\).

* \({R_C} = \sqrt {R_S^2 - I{J^2}}  = \sqrt {25 - 1}  = \sqrt {24} \).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com