Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} - 2\left(
Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S) có phương trình
\({x^2} + {y^2} + {z^2} - 2\left( {a + 4b} \right)x + 2\left( {a - b + c} \right)y + 2\left( {b - c} \right)z + d = 0\), tâm I nằm trên mặt phẳng \(\left( \alpha \right)\) cố định. Biết rằng \(4a + b - 2c = 4\), tìm khoảng cách từ điểm \(D\left( {1;2; - 2} \right)\) đến mặt phẳng \(\left( \alpha \right)\).
Đáp án đúng là: D
Quảng cáo
+) Mặt cầu (S): \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) có tâm là \(I\left( {a;b;c} \right)\). Xác định mặt phẳng cố định đi qua I.
+) Công thức tính khoảng cách từ \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là:
\(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












